925 resultados para light-dark cycle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological soil crusts (BSCs) in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China, feature moss-dominated BSCs, which play an indispensable role in sand fixation. Syntrichia caninervis Mitt. (S. caninervis) serves as one of the most common species in BSCs in the desert. In this study we examined the morphological structure of S. caninervis from leafy gametophyte to protonema using light and scanning electron microscopy (SEM). We also examined the relationships between the morphological structure of S. caninervis and environmental factors. We found that: (1) this moss species is commonly tufted on the sand surface, and its leaves are folded upwards and twisted around the stem under dry conditions; (2) the cells on both upper and lower leaf surfaces have C-shaped dark papillae, which may reflect sunlight to reduce the damage from high temperature; (3) the leaf costa is excurrent, forming an awn with forked teeth; and (4) the protonema cells are small and thickset with thick cell walls and the cytoplasm is highly concentrated with a small vacuole. In addition, we also found that the protonema cells always form pouches on the tip of the mother cells during the process of cell polarization. Our results suggest that S. caninervis has, through its life cycle, several morphological and structural characteristics to adapt to dry environmental conditions. These morphological features of S. caninervis may also be found in other deserts in the world due to the world-wide distribution of the species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel pink light emitting long-lasting afterglow CdSiO3:SM3+ phosphors are prepared by the conventional high-temperature solid-state method and their luminescent properties are investigated. XRD and photolurflinescence (PL) spectra are used to characterize the synthesized phosphors. The phosphors are well crystallized by calcinations at 1050degreesC for 5 h. These phosphors emit pink light and show long-lasting phosphorescence after they are excited with 254 nm ultraviolet light. The phosphorescence lasts for nearly 5 h in the light perception of the dark-adapted human eye (0.32mcd/m(2)). The phosphorescence mechanism is also investigated. All the results indicate that these phosphors have promising potential practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254 nm UV irradiation have been removed for about 30 min. In the emission spectrum of 5% Dy3+ doped CdSiO3 phosphor, there are two emission peaks of Dy3+, 580 mn (F-4(9/2)-->H-6(13/2)) and 486 nm (F-4(9/2)-->H-6(15/2)), as well as a broad band emission located at about 410 nm. All the three emissions form a white light with CIE chromaticity coordinates x=0.3874, y=0.3760 and the color temperature is 4000 K under 254 mn excitation. It indicated that this phosphor is a promising new luminescent material for practice application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel indigo light emitting long-lasting phosphors CdSiO3: RE3+ (RE = Y, La, Gd, Lu) was prepared by the conventional high-temperature solid-state method. The XRD, photoluminescence (PL) spectra and afterglow intensity decay were used to characterize the synthesized phosphors. These phosphors emitted indigo light and showed long-lasting phosphorescence. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254-nm UV irradiation have been removed for more than 30 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alignment films prepared from low molar mass photo-crosslinkable materials containing the cinnamate group can be used for aligning LCs after irradiating the films with linearly polarized UV light. The high contrast observed in the polarizing optical microscope between dark and bright images indicates that the alignment is quite uniform. As the photoreaction progresses. the average roughness of the films is increased. All the aggregate structures, 'lamellar crystals'. produced by the photo-crosslinking reaction are of a square shape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was carried out to examine the effect of dynamic photosynthetically active photon flux density (PPFD) on photoinhibition and energy use in three herbaceous species, prostrate Saussurea superba, erect-leaved S. katochaete, and half-erect-leaved Gentiana straminea, from the Qinghai-Tibet Plateau. Chlorophyll fluorescence response was measured under each of three sets of high-low PPFD combinations: 1700-0, 1400-300, and 1200-500 mu mol m(-2) s(-1), illuminating in four dynamic frequencies: 1, 5, 15, and 60 cycles per 2 h. The total light exposure time was 2h and the integrated PPFD was the same in all treatments. The highest frequency of PPFD fluctuation resulted in the lowest photochemical activity, the highest level of non-photochemical quenching, and the greatest decrease of F-v/F-m (maximal photochemical efficiency of PSII). The 5 and 15 cycles per 2h treatments resulted in higher photochemical activity than the 1 cycle per 2h treatment. The 1700-0 PPFD combination led to the lowest photochemical activity and more serious photoinhibition in all species. S. superba usually exhibited the highest photochemical activity and CO2 uptake rate, the lowest reduction of F-v/F-m,F- and the smallest fraction of energy in thermal dissipation. With similar fractions of thermal dissipation, S. katochaete had relatively less photoinhibition than G. straminea owing to effective F-o quenching. The results suggest that high frequency of fluctuating PPFD generally results in photoinhibition, which is more serious under periods of irradiation with high light intensity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morgan, Huw, Habbal, S.R., Woo, R., (2006) 'The Depiction of Coronal Structure in White-Light Images', Solar Physics 236(2) pp.263-272 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chungui Lu, Olga A. Koroleva, John F. Farrar, Joe Gallagher, Chris J. Pollock, and A. Deri Tomos (2002). Rubisco small subunit, chlorophyll a/b-binding protein and sucrose : fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. Plant Physiology, 130 (3) pp.1335-1348 Sponsorship: BBSRC RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light is a critical environmental signal that regulates every phase of the plant life cycle, from germination to floral initiation. Of the many light receptors in the model plant Arabidopsis thaliana, the red- and far-red light-sensing phytochromes (phys) are arguably the best studied, but the earliest events in the phy signaling pathway remain poorly understood. One of the earliest phy signaling events is the translocation of photoactivated phys from the cytoplasm to the nucleus, where they localize to subnuclear foci termed photobodies; in continuous light, photobody localization correlates closely with the light-dependent inhibition of embryonic stem growth. Despite a growing body of evidence supporting the biological significance of photobodies in light signaling, photobodies have also been shown to be dispensable for seedling growth inhibition in continuous light, so their physiological importance remains controversial; additionally, the molecular components that are required for phy localization to photobodies are largely unknown. The overall goal of my dissertation research was to gain insight into the early steps of phy signaling by further defining the role of photobodies in this process and identifying additional intragenic and extragenic requirements for phy localization to photobodies.

Even though the domain structure of phys has been extensively studied, not all of the intramolecular requirements for phy localization to photobodies are known. Previous studies have shown that the entire C-terminus of phys is both necessary and sufficient for their localization to photobodies. However, the importance of the individual subdomains of the C-terminus is still unclear. For example a truncation lacking part of the most C-terminal domain, the histidine kinase-related domain (HKRD), can still localize to small photobodies in the light and behaves like a weak allele. However, a point mutation within the HKRD renders the entire molecule completely inactive. To resolve this discrepancy, I explored the hypothesis that this point mutation might impair the dimerization of the HKRD; dimerization has been shown to occur via the C-terminus of phy and is required for more efficient signaling. I show that this point mutation impairs nuclear localization of phy as well as its subnuclear localization to photobodies. Additionally, yeast-two-hybrid analysis shows that the wild-type HKRD can homodimerize but that the HKRD containing the point mutation fails to dimerize with both itself and with wild-type HKRD. These results demonstrate that dimerization of the HKRD is required for both nuclear and photobody localization of phy.

Studies of seedlings grown in diurnal conditions show that photoactivated phy can persist into darkness to repress seedling growth; a seedling's growth rate is therefore fastest at the end of the night. To test the idea that photobodies could be involved in regulating seedling growth in the dark, I compared the growth of two transgenic Arabidopsis lines, one in which phy can localize to photobodies (PBG), and one in which it cannot (NGB). Despite these differences in photobody morphology, both lines are capable of transducing light signals and inhibiting seedling growth in continuous light. After the transition from red light to darkness, the PBG line was able to repress seedling growth, as well as the accumulation of the growth-promoting, light-labile transcription factor PHYTOCHROME INTERACTING FACTOR 3 (PIF3), for eighteen hours, and this correlated perfectly with the presence of photobodies. Reducing the amount of active phy by either reducing the light intensity or adding a phy-inactivating far-red pulse prior to darkness led to faster accumulation of PIF3 and earlier seedling growth. In contrast, the NGB line accumulated PIF3 even in the light, and seedling growth was only repressed for six hours; this behavior was similar in NGB regardless of the light treatment. These results suggest that photobodies are required for the degradation of PIF3 and for the prolonged stabilization of active phy in darkness. They also support the hypothesis that photobody localization of phys could serve as an instructive cue during the light-to-dark transition, thereby fine-tuning light-dependent responses in darkness.

In addition to determining an intragenic requirement for photobody localization and further exploring the significance of photobodies in phy signaling, I wanted to identify extragenic regulators of photobody localization. A recent study identified one such factor, HEMERA (HMR); hmr mutants do not form large photobodies, and they are tall and albino in the light. To identify other components in the HMR-mediated branch of the phy signaling pathway, I performed a forward genetic screen for suppressors of a weak hmr allele. Surprisingly, the first three mutants isolated from the screen were alleles of the same novel gene, SON OF HEMERA (SOH). The soh mutations rescue all of the phenotypes associated with the weak hmr allele, and they do so in an allele-specific manner, suggesting a direct interaction between SOH and HMR. Null soh alleles, which were isolated in an independent, tall, albino screen, are defective in photobody localization, demonstrating that SOH is an extragenic regulator of phy localization to photobodies that works in the same genetic pathway as HMR.

In this work, I show that dimerization of the HKRD is required for both the nuclear and photobody localization of phy. I also demonstrate a tight correlation between photobody localization and PIF3 degradation, further establishing the significance of photobodies in phy signaling. Finally, I identify a novel gene, SON OF HEMERA, whose product is necessary for phy localization to photobodies in the light, thereby isolating a new extragenic determinant of photobody localization. These results are among the first to focus exclusively on one of the earliest cellular responses to light - photobody localization of phys - and they promise to open up new avenues into the study of a poorly understood facet of the phy signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

35S-Methionine and 3H-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus cyanobacteria and bacteria with low nucleic acid (LNA) content, comprising 60% SAR11-related cells. The results of flow cytometric sorting of labelled bacterioplankton cells showed that when incubated in the light, Prochlorococcus and LNA bacteria increased their uptake of amino acids on average by 50% and 23%, respectively, compared with those incubated in the dark. Amino acid uptake of Synechococcus cyanobacteria was also enhanced by visible light, but bacteria with high nucleic acid content showed no light stimulation. Additionally, differential uptake of the two amino acids by the Prochlorococcus and LNA cells was observed. The populations of these two types of cells on average completely accounted for the determined 22% light enhancement of amino acid uptake by the total bacterioplankton community, suggesting a plausible way of harnessing light energy for selectively transporting scarce nutrients that could explain the numerical dominance of these groups in situ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of harmonic generation in the interaction of short laser pulses with solid targets holds the promise for the production of intense attosecond pulses. Using the three dimensional code ILLUMINATION we have performed simulations pertaining to an experimentally realizable parameter range by high power laser systems to become available in the near future. The emphasis of the investigation is on the coherent nature of the emission. We studied the influence of the plasma scale length on the harmonic efficiency, angular distribution and the focusability using a post processing scheme in which the far-field of the emission is calculated. It is found that the presence of an extended density profile reduces significantly the transverse coherence length of the emitted XUV light. The different stages of the interaction for two particular cases can be followed with the help of movies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e. g., the transcriptional regulatory or signaling network, representing a blue print of the current dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions, instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes. The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do not use time series data but base our analysis on the prior information of causal interactions among genes. The major purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate concepts than it might seem at first.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial dynamics of the optical emission from an array of 50x50 individual microplasma devices is reported. The array is operated in noble gas at atmospheric pressure with an ac voltage. The optical emission is analyzed with phase and space resolution. It has been found that the emission is not continuous over the entire ac period, it occurs only twice in each cycle. Each of the observed emission phases shows a self-pulsing of the discharge, with several bursts of emission of a fixed width and repetition rate. Cross-talk between the individual devices can be observed through spatially resolved measurements. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classic, non-photochemical blue bottle experiment involves the reaction of methylene blue (MB) with deprotonated glucose, to form a bleached form of the dye, leuco-methylene blue (LMB), and subsequent colour recovery by shaking with air. This reaction is a popular demonstrator of key principles in kinetics and reaction mechanisms. Here it is modified so as to highlight features of homogenous and heterogeneous photoinduced electron transfer (PET) (Pure Appl. Chem., 2007, 79, 293-465) reactions, i.e. blue bottle light experiments. The homogeneous blue bottle light experiment uses methylene blue, MB, as the photo-sensitizer and triethanolamine as the sacrificial electron donor. Visible light irradiation of this system leads to its rapid bleaching, followed by the ready restoration of its original colour upon shaking away from the light source. The heterogeneous blue bottle light experiment uses titania as the photo-sensitizer, MB as a redox indicator and glucose as the sacrificial electron donor. UVA light irradiation of this system leads to the rapid bleaching of the MB and the gradual restoration of its original colour with shaking and standing. The latter 'dark' step can be made facile and more demonstrator-friendly by using platinised titania particles. These two photochemical versions of the blue bottle experiment are used to explore the factors which underpin homogeneous and heterogeneous PET reactions and provide useful demonstrations of homogeneous and heterogeneous photochemistry.