860 resultados para life-time contributions and retirement
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^
Resumo:
Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, (1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) .7%), borderline (HbA1c 7-8.9%), and poor (HbA1c .9%) glycemic control and potentially new risk factors (e.g. work characteristics), and (2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and (3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.^
Resumo:
An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.
Resumo:
The buried time capsule and plaque. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
Bok (2010) argues civic understanding could improve student happiness by improving perceptions of politics and government, but the state of civic education in public schools keeps this from happening. This study argues that this notion of civic education is conservative by exploring Bok’s premises, social studies, and civic education.
Resumo:
College personnel are required to provide accommodations for students who are deaf and hard of hearing (D/HoH), but few empirical studies have been conducted on D/HoH students as they learn under the various accommodation conditions (sign language interpreting, SLI, real-time captioning, RTC, and both). Guided by the experiences of students who are D/HoH at Miami-Dade College (MDC) who requested RTC in addition to SLI as accommodations, the researcher adopted Merten’s transformative-emancipatory theoretical framework that values perceptions and voice of students who are D/HoH. A mixed methods design addressed two research questions: Did student learning differ for each accommodation? What did students experience while learning through accommodations? Participants included 30 students who were D/HoH (60% women). They represented MDC’s majority minority population: 10% White (non-Hispanic), 20% Black (non-Hispanic, including Haitian/Caribbean), 67% Hispanic, and 3% other. Hearing loss, ranged from severe-profound (70%) to mild-moderate (30%). All were able to communicate with American Sign Language: Learning was measured while students who were D/HoH viewed three lectures under three accommodation conditions (SLI, RTC, SLI+RTC). The learning measure was defined as the difference in pre- and post-test scores on tests of the content presented in the lectures. Using repeated measure ANOVA and ANCOVA, confounding variables of fluency in American Sign Language and literacy skills were treated as covariates. Perceptions were obtained through interviews and verbal protocol analysis that were signed, videotaped, transcribed, coded, and examined for common themes and metacognitive strategies. No statistically significant differences were found among the three accommodations on the learning measure. Students who were D/HoH expressed thoughts about five different aspects of their learning while they viewed lectures: (a) comprehending the information, (b) feeling a part of the classroom environment, (c) past experiences with an accommodation, (d) individual preferences for an accommodation, (e) suggestions for improving an accommodation. They exhibited three metacognitive strategies: (a) constructing knowledge, (b) monitoring comprehension, and (c) evaluating information. No patterns were found in the types of metacognitive strategies used for any particular accommodation. The researcher offers recommendations for flexible applications of the standard accommodations used with students who are D/HoH.
Resumo:
Smoking prevalence among adolescents in the Middle East remains high while rates of smoking have been declining among adolescents elsewhere. The aims of this research were to (1) describe patterns of cigarette and waterpipe (WP) smoking, (2) identify determinants of WP smoking initiation, and (3) identify determinants of cigarette smoking initiation in a cohort of Jordanian school children. ^ Among this cohort of school children in Irbid, Jordan, (age ≈ 12.6 at baseline) the first aim (N=1,781) described time trends in smoking behavior, age at initiation, and changes in frequency of smoking from 2008–2011 (grades 7–10). The second aim (N=1,243) identified determinants of WP initiation among WP-naïve students; and the third aim (N=1,454) identified determinants of cigarette smoking initiation among cigarette naïve participants. Determinants of initiation were assessed with generalized mixed models. All analyses were stratified by gender. ^ Baseline prevalence of current smoking (cigarettes or WP) for boys and girls was 22.9% and 8.7% respectively. Prevalence of ever- and current- any smoking, cigarette smoking, WP smoking, and dual cigarette/WP smoking was higher in boys than girls each year (p<0.001). At all time points, prevalence of WP smoking was higher than that of cigarette smoking (p<0.001) for both boys and girls. WP initiation was documented in 39% of boys and 28% of girls. Cigarette initiation was documented in 37% of boys and 24% of girls. Determinants of WP initiation included ever-cigarette smoking, low WP refusal self-efficacy, intention to smoke, and having teachers and friends who smoke WP. Determinants of cigarette smoking initiation included ever-WP smoking, low cigarette refusal self-efficacy, intention to start smoking cigarettes, and having friends and family who smoke.^ These studies reveal intensive smoking patterns at early ages among Jordanian youth in Irbid, characterized by a predominance of WP smoking. WP may be a vehicle for tobacco dependence and subsequent cigarette uptake. The sizeable incidence of WP and cigarette initiation among students of both sexes points to a need for culturally relevant smoking prevention interventions. Gender-specific factors, refusal skills, and smoking cessation of both WP and cigarettes for youth and their parents/teachers would be important components of such initiatives. ^
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.
Resumo:
Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, 1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) ≥7%), borderline (HbA1c 7-8.9%), and poor (HbA1c ≥9%) glycemic control and potentially new risk factors (e.g. work characteristics), and 2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and 3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.
Resumo:
The survey was jointly funded by NHS Health Scotland and the Glasgow Centre for Population Health.
Resumo:
The survey was jointly funded by NHS Health Scotland and the Glasgow Centre for Population Health.
Resumo:
Peer reviewed
Resumo:
The survey was jointly funded by NHS Health Scotland and the Glasgow Centre for Population Health.
Resumo:
Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5 Ma, 38.3 Ma and 40.1 Ma.
Resumo:
The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.