895 resultados para koritnigite, mineral, hydrogen-arsenate, Raman spectroscopy, molecular water, hydrogen bonds
Resumo:
This paper presents the application of surface-enhanced resonance Raman spectroscopy (SERRS) for the structural study of alizarin red S (ARS) and the nature of its interaction with silver nanoparticles. SERRS data for ARS over nanostructured silver electrodes suggest a surface-induced reaction of the adsorbed dye and the formation of an ion stabilized by the dye and alkali ions adsorbed at the metal surface. We found that precoating the SERS active substrate with 1-propanethiol inhibits the surface-induced modification of ARS. In addition to preventing structural modifications of ARS, the coating also concentrates the hydrophobic dye close enough to the SERS active interface enabling the observation of excellent Raman spectra of ARS in aqueous environment at ppm levels. The influence of resonance Raman effect and of the pH on the SERS spectra of ARS was also investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of 4-aminopyridine (4-AP) on Co and Ag electrodes in acid or alkaline solutions of KCl and KI electrolyte salts were monitored by the Surface-enhanced Raman Spectroscopy (SERS) technique. The SERS intensity for the Ag electrode was in 2 orders of magnitude higher than for the Co electrode, due to the enhancement of the Raman cross-section on Ag by the surface-plasmon excitation. In acidic chloride medium (pH 4), the SERS results for Ag electrodes indicate that the protonated form of 4-AP (4-APH(+)) adsorbs in the potential range of -0.1 to -0.6 V (Ag broken vertical bar AgCl broken vertical bar KCl sat) through hydrogen-bonding between 4-APH(+) and Cl(-) adsorbed on the electrode surface: at more negative potentials the neutral form 4-AP is the predominant adsorbed species. For Co electrode in the same medium, only bands due to neutral 4-AP were observed in the spectra at -0.8 and -0.9 V. For more negative potentials bands assigned to both 4-AP and 4-AP surface complex are observed, with the lasts being enhanced, as the potentials are turned more negative. In alkaline chloride medium (pH 13), for less negative potentials the bands assigned to free 4-AP were observed in the spectra of both Ag and Co surfaces. For more negative potentials, only bands assigned to the 4-AP surface complex were observed. For 0.1 mol L(-1) KI acidic or alkaline solutions, bands assigned to 4-AP and 4-APH(+) were observed in a wider potential range than in chloride solutions. An adsorption scheme of 4-AP on Ag and Co is proposed for acidic and alkaline solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The influence of molecular oxygen in the interactions of emeraldine base form of polyaniline (EB-PANI) with Fe(III) or Cu(II) ions in 1-methyl-2-pyrrolidinone (NMP) solutions has been investigated by UV-vis-NIR, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies. Through the set of spectroscopic results it was possible to rationalize the role Of O(2) and to construct a scheme of preferential routes occurring in the interaction of EB-PANI with Fe(III) or Cu(II). Solutions of 4.0 mmol L(-1) EB-PANI with 0.8, 2.0 and 20 mmol L(-1) Fe(III) or Cu(II) ions in NMP were investigated and the main observed reactions were EB-PANI oxidation to pernigraniline (PB-PANI) and EB-PANI doping process by pseudo-protonation, or by a two-step redox process. In the presence Of O(2), PB-PANI is observed in all Fe(III)/EB solutions and EB-PANI doping only occurs in solutions with high Fe(III) concentrations through pseudo-protonation. On the other hand, emeraldine salt (ES-PANI) is formed in all Fe(III)/EB solutions under N(2) atmosphere and, in this case, doping occurs both by the pseudo-protonation and two-step redox mechanisms. In all Cu(II)/EB solutions PB-PANI is formed both in the presence and absence of O(2), and only for solutions with high Cu(II) concentrations doping process occurs in a very low degree. The most important result from EPR spectra was providing evidence for redox steps. The determined Cu(II) signal areas under oxygen are higher than under N(2) and, further. the initial metal proportions (1:2:20) are maintained in these spectra, indicating that Cu(I) formed are re-oxidized by O(2) and. so, Cu(II) ions are being recycled. Consistently, for the solutions prepared under nitrogen, the corresponding areas and proportions in the spectra are much lower, confirming that a partial reduction of Cu(II) ions actually occurs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The (1)H NMR spectra of N-methoxy-N-methyl-2-[(4`-substituted)phenylsulfinyl]-propanamides [Y-Ph-S(O)CH(Me)C(O)N(OMe)Me; Y = OMe 1, Me 2, H 3. Cl 4, NO(2) 5] along with the X-ray diffraction analysis of the nitro-derivative (5). have shown the existence of two pairs of diastereomers (racemic mixture) [C(R)S(S)/C(S)S(R) (diast(1)) and C(R)S(R)/C(S)S(S) (diast(2))] in the ratio of ca. 7:3. respectively. The v(CO) IR analysis of the title compounds supported by HF and B3LYP/6-31G** calculations of 3 and of the parent N-methoxy-N-methyl-propanamide (6) by HF, have shown that diast(1) exists in an equilibrium between the two more polar and more stable quasi-cis (q-c(1) and q-c(2)) conformers and the gauche(g) conformer. The population of the g conformer in the equilibrium increases with the increase in the solvent polarity, which is attributed to a larger solvation effect on the carbonyl and sulfinyl groups. Diast(2) of compound 3 occurs in the gas phase as an equilibrium between the most stable quasi-gauche (q-g) conformer and the quasi-cis (q-c) conformer, both presenting very similar dipole moments. The former is stabilized by electrostatic and charge transfer interactions, which results in a less solvated spatial arrangement. Moreover, all conformers of both diastereomers are stabilized by several intramolecular hydrogen bonds. X-ray single crystal analysis performed for diast(1) and for diast(2) of 5 indicates that both stereoisomers assume, in the solid state, the anti-clinal (gauche) conformation. For the crystal packing, diast(1) of 5 is made up of three molecules joined through two centro-symmetric H center dot center dot center dot O hydrogen bonds. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cobalt catalysts were prepared on supports of SiO(2) and gamma-Al(2)O(3) by the impregnation method, using a solution of Co precursor in methanol. The samples were characterized by XRD, TPR, and Raman spectroscopy and tested in ethanol steam reforming. According to the XRD results, impregnation with the methanolic solution led to smaller metal crystallites than with aqueous solution, on the SiO(2) support. On gamma-Al(2)O(3), all the samples exhibited small crystallites, with either solvent, due to a higher Co-support interaction that inhibits the reduction of Co species. The TPR results were consistent with XRD results and the samples supported on gamma-Al(2)O(3) showed a lower degree of reduction. In the steam reforming of ethanol, catalysts supported on SiO(2) and prepared with the methanolic solution showed the best H(2), CO(2) and CO selectivity. Those supported on gamma-Al(2)O(3) showed lower H(2) selectivity. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
NiO/Al(2)O(3) catalyst precursors were prepared by simultaneous precipitation, in a Ni:Al molar ratio of 3:1, promoted with Mo oxide (0.05, 0.5, 1.0 and 2.0 wt%). The solids were characterized by adsorption of N(2), XRD, TPR, Raman spectroscopy and XPS, then activated by H(2) reduction and tested for the catalytic activity in methane steam reforming. The characterization results showed the presence of NiO and Ni(2)AlO(4) in the bulk and Ni(2)AlO(4) and/or Ni(2)O(3) and MoO(4)(-2) at the surface of the samples. In the catalytic tests, high stability was observed with a reaction feed of 4:1 steam/methane. However, at a steam/methane ratio of 2: 1, only the catalyst with 0.05% Mo remained stable throughout the 500 min of the test. The addition of Mo to Ni catalysts may have a synergistic effect, probably as a result of electron transfer from the molybdenum to the nickel, increasing the electron density of the catalytic site and hence the catalytic activity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Uma nova rede de polímeros interpenetrantes (IPN) baseada em poliuretana de óleo de mamona e poli(etileno glicol) e poli(metacrilato de metila) foi preparada para ser utilizada como eletrólito polimérico. Os seguintes parâmetros de polimerização foram avaliados: massa molecular do poli(etileno glicol) (PEG), concentração de PEG e concentração de metacrilato de metila. As membranas de IPN foram caracterizadas por calorimetria diferencial de varredura (DSC) e espectroscopia de infravermelho por transformada de Fourier (FT-IR). Os eletrólitos de redes de polímeros interpenetrantes (IPNE) foram preparados a partir da dopagem com sal de lítio através do inchamento numa solução de 10% em massa de LiClO4 na mistura de carbonato de etileno e carbonato de propileno na razão mássica de 50:50. As IPNEs foram caracterizadas por espectroscopia de impedância eletroquímica e Raman. As IPNEs foram testadas como eletrólito polimérico em supercapacitores. As células capacitivas foram preparadas utilizando eletrodos de polipirrol (PPy). Os valores de capacitância e eficiência foram calculados por impedância eletroquímica, voltametria cíclica e ciclos galvonostáticos de carga e descarga. Os valores de capacitância obtidos foram em torno de 90 F.g-1 e eficiência variou no intervalo de 88 a 99%. Os valores de densidade de potência foram superiores a 250 W.kg-1 enquanto que a densidade de energia variou de 10 a 33 W.h.kg-1, dependendo da composição da IPNE. As características eletroquímicas do eletrólito formado pela IPN-LiClO4 (IPNE) foram comparadas aos eletrólitos poliméricos convencionais, tais como poli(difluoreto de vinilideno)-(hexafluorpropileno) ((PVDF-HFP/LiClO4) e poliuretana comercial (Bayer desmopan 385) (PU385/LiClO4). As condutividades na temperatura ambiente foram da ordem de 10-3 S.cm-1. A capacitância da célula utilizando eletrodos de PPy com eletrólito de PVDFHFP foi de 115 F.g-1 (30 mF.cm-2) e 110 F.g-1 (25 mF.cm-2) para a célula com PU385 comparadas a 90 F.g-1 (20 mF.cm-2) para a IPNE. Os capacitores preparados com eletrólito de IPNE apresentaram valores de capacitância inferior aos demais, entretanto provaram ser mais estáveis e mais resistentes aos ciclos de carga/descarga. A interpenetração de duas redes poliméricas, PU e PMMA produziu um eletrólito com boa estabilidade mecânica e elétrica. Um protótipo de supercapacitor de estado sólido foi produzindo utilizando eletrodos impressos de carbono ativado (PCE) e o eletrólito polimérico de IPNE. A técnica de impressão de carbono possui várias vantagens em relação aos outros métodos de manufatura de eletrodos de carbono, pois a área do eletrodo, espessura e composição são variáveis que podem ser controladas experimentalmente. As células apresentaram uma larga janela eletroquímica (4V) e valores da capacitância da ordem de 113 mF.cm-2 (16 F.g-1). Métodos alternativos de preparação do PCE investigados incluem o uso de IPNE como polímero de ligação ao carbono ativado, estes eletrodos apresentaram valores de capacitância similares aos produzidos com PVDF. A influência do número de camadas de carbono usadas na produção do PCE também foi alvo de estudo. Em relação ao eletrólito polimérico, o plastificante e o sal de lítio foram adicionados durante a síntese, formando a IPNGel. As células apresentaram alta capacitância e boa estabilidade após 4000 ciclos de carga e descarga. As membranas de IPN foram testadas também como reservatório de medicamento em sistemas de transporte transdérmico por iontoforese. Os filmes, mecanicamente estáveis, formaram géis quando inchado em soluções saturadas de lidocaina.HCl, anestésico local, em propileno glicol (PG), poli(etileno glicol) (PEG400) e suas misturas. O grau de inchamento em PG foi de 15% e 35% em PEG400. Agentes químicos de penetração foram utilizados para diminuir a resistência da barreira causada pela pele, dentre eles o próprio PG, a 2-pirrolidinona (E1) e a 1-dodecil-2-pirrolidinona (E2). Os géis foram caracterizados por espectroscopia de impedância eletroquímica e transporte passivo e por iontoforese através de uma membrana artificial (celofane). O sistema IPN/ lidocaina.HCl apresentou uma correlação linear entre medicamento liberado e a corrente aplicada. Os melhores resultados de transporte de medicamento foram obtidos utilizando o PG como solvente.
Resumo:
The 100% cotton fabric (CO)* treated with plasma of methane CH4 has direct application in all areas that needs of aqueous solutions repellent material like coatings and uniforms applied biomedical, aeronautics, and automobile between others. 100% cotton fabric (CO) samples were treated by plasma with two differents atmosphere: Methane gas (CH4), treatment time was varied in 10 in 10 min. until 60 min., and mixture methane/argon (CH4/Ar), it was varied the proportion 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 e 9:1, with treatment time of 30 minutes. In both, the fluxe was 5 sccm (second cubic centimeter), pressure 6 mbar, voltage 490 V and current 0,15A. The objective of work was measure the superficial tension of 100% CO then it treated with plasma, using contact angle measures of water and glycerol with the surface. The samples were tested after treatment, with 8 and 12 months to verify the superficial modification effects. It was verified an increase of hydrophobility with the Sessile drop values varied between 116,69º to 137,85º and it carried on after 12 months. The no treated samples shows contact angle equal 0º. OES analysis and Raman spectroscopy were accomplished. In the SEM analysis was verified oligomers. The plasma treatment is correct environmental, It turning greater than conventional treatments
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The discovery of a new monoclinic phase in the PbZr1-xTixO3 (PZT) system in the vicinity of the morphotropic phase boundary (MPB), previously considered as a region where the rhombohedral and tetragonal phases of PZT coexist, was recently reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. The main objective has been to define a new phase diagram of PZT. In this context, infrared spectroscopic studies were performed in the vicinity of the MPB and studies were initially centred on a PZT sample with x = 0.49 mol% Ti content. Results suggested that the monoclinic --> tetragonal phase transition occurs at 237 K, confirming the use of IR as a useful technique to investigate this phase transition.
Resumo:
Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V(2)O(5)/TiO(2) catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm(-1) and polymeric vanadates by two broad bands in the region from 900 to 960 cm(-1) and 770 to 850 cm(-1). The Raman spectra do not exhibit characteristic peaks of crystalline V(2)O(5). These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V(4+) ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V(4+) ions are located in sites with octahedral symmetry substituting for Ti(4+) ions in the rutile structure. Magnetically interacting V(4+) ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V(2)O(5), a partial oxidation of V(4+) to V(5+) is apparent from the EPR results.
Resumo:
Conformational energy calculations and molecular dynamics investigations, both in water and in dimethyl sulfoxide, were carried out on the exopolysaccharide cepacian produced by the majority of the clinical strains of Burkholderia cepacia, an opportunistic pathogen causing serious lung infection in patients affected by cystic fibrosis, the investigation was aimed at defining the structural and conformational features, which might be relevant for clarification of the structure-function relationships of the polymer. The molecular dynamics calculations were carried out by Ramachandran-type energy plots of the disaccharides that constitute the polymer repeating unit. The dynamics of an oligomer composed of three repeating units were investigated in water and in Me2SO, a non-aggregating solvent. Analysis of the time persistence of hydrogen bonds showed the presence of a large number of favourable interactions in water, which were less evident in Me2SO. The calculations on the cepacian chain indicated that polymer conformational features in water were affected by the lateral chains, but were also largely dictated by the presence of solvent. Moreover, the large number of intra-chain hydrogen bonds in water disappeared in Me2SO solution, increasing the average dimension of the polymer chains. (c) 2005 Elsevier Ltd. All rights reserved.