951 resultados para irradiation uniformity of laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study is to analyze the effects of copper vapor laser radiation on the radicular wall of human teeth. Materials and Methods: Immediately after the crowns of 10 human uniradicular teeth were cut along the cement-enamel junction, a chemical-surgical preparation of the radicular canals was completed. Then the roots were longitudinally sectioned to allow for irradiation of the surfaces of the dentin walls of the root canals. The hemi-roots were separated into two groups: one (control) with five hemi-roots that were not irradiated, and another (experimental) with 15 hemi-roots divided into three subgroups that were submitted to the following exposure times: 0.02,0.05, and 0.1 s. A copper vapor laser (510.6 nm) with a total average power of 6.5 W in green emission, frequency of 16.000 Hz, and pulse duration of 30 ns was used. Results: The results obtained by scanning electron microscope analysis showed the appearance of a cavity in the region of laser beam impact, with melting, recrystallization, and cracking on the edges of the dentin of the cavity due to heat diffusion. Conclusions: We determined that the copper vapor laser produces significant morphologic changes in the radicular wall of human teeth when using the parameters in this study. However, further research should be done to establish parameters that are compatible with dental structure in order to eliminate thermal damages. © Mary Ann Liebert, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations-namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and infuence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifcations caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Clinical relevance: Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the super-fcial structure of the target tissue irradiated, may be correlated to the structural optical modifcations of the substrate produced by an interaction of the energy propagated by laser systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aimed to investigate the effect of 830 and 670 nm diode laser on the viability of random skin flaps in rats. Background data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and reducing the inflammatory process after injury. However, the efficiency of such treatment remains uncertain, and there is also some controversy regarding the efficacy of different wavelengths currently on the market. Materials and methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group, group 2 received 830 nm laser radiations, and group 3 was submitted to 670 nm laser radiation (power density = 0.5 mW/cm(2)). The animals underwent laser therapy with 36 J/cm(2) energy density (total energy = 2.52 J and 72 sec per session) immediately after surgery and on the 4 subsequent days. The application site of laser radiation was one point at 2.5 cm from the flap's cranial base. The percentage of skin flap necrosis area was calculated on the 7th postoperative day using the paper template method. A skin sample was collected immediately after to determine the vascular endothelial growth factor (VEGF) expression and the epidermal cell proliferation index (KiD67). Results: Statistically significant differences were found among the percentages of necrosis, with higher values observed in group 1 compared with groups 2 and 3. No statistically significant differences were found among these groups using the paper template method. Group 3 presented the highest mean number of blood vessels expressing VEGF and of cells in the proliferative phase when compared with groups 1 and 2. Conclusions: LLLT was effective in increasing random skin flap viability in rats. The 670 nm laser presented more satisfactory results than the 830 nm laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium fluoride (CaF2) is one of the key lens materials in deep-ultraviolet microlithography because of its transparency at 193 nm and its nearly perfect optical isotropy. Its physical and chemical properties make it applicable for lens fabrication. The key feature of CaF2 is its extreme laser stability. rnAfter exposing CaF2 to 193 nm laser irradiation at high fluences, a loss in optical performance is observed, which is related to radiation-induced defect structures in the material. The initial rapid damage process is well understood as the formation of radiation-induced point defects, however, after a long irradiation time of up to 2 months, permanent damage of the crystals is observed. Based on experimental results, these permanent radiation-induced defect structures are identified as metallic Ca colloids.rnThe properties of point defects in CaF2 and their stabilization in the crystal bulk are calculated with density functional theory (DFT). Because the stabilization of the point defects and the formation of metallic Ca colloids are diffusion-driven processes, the diffusion coefficients for the vacancy (F center) and the interstitial (H center) in CaF2 are determined with the nudged elastic band method. The optical properties of Ca colloids in CaF2 are obtained from Mie-theory, and their formation energy is determined.rnBased on experimental observations and the theoretical description of radiation-induced point defects and defect structures, a diffusion-based model for laser-induced material damage in CaF2 is proposed, which also includes a mechanism for annealing of laser damage. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate the lethal activity of photoactivated disinfection (PAD) on Enterococcus faecalis (ATCC 29212) and mixed populations of aerobic or anaerobic bacteria in infected root canals using a diode laser after the application of a photosensitizer (PS). MATERIALS AND METHODS First, the bactericidal activity of a low power diode laser (200 mW) against E. faecalis ATCC 29212 pre-treated with a PS (toluidine blue) for 2 min were examined after different irradiation times (30 s, 60 s and 90 s). The bactericidal activity in the presence of human serum or human serum albumin (HSA) was also examined. Second, root canals were infected with E. faecalis or with mixed aerobic or anaerobic microbial populations for 3 days and then irrigated with 1.5% sodium hypochlorite and exposed to PAD for 60 s. RESULTS Photosensitization followed by laser irradiation for 60 s was sufficient to kill E. faecalis. Bacteria suspended in human serum (25% v/v) were totally eradicated after 30 s of irradiation. The addition of HSA (25 mg/ml or 50 mg/ml) to bacterial suspensions increased the antimicrobial efficacy of PAD after an irradiation time of 30 s, but no longer. The bactericidal effect of sodium hypochlorite was only enhanced by PAD during the early stages of treatment. PAD did not enhance the activity of sodium hypochlorite against a mixture of anaerobic bacteria. CONCLUSIONS The bactericidal activity of PAD appears to be enhanced by serum proteins in vitro, but is limited to bacteria present within the root canal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper nitride is a metastable material which results very attractive because of their potential to be used in functional device. Cu3 N easily decomposes into Cu and N2 by annealing [1] or irradiation (electron, ions, laser) [2, 3]. Previous studies carried out in N-rich Cu3 N films irradiated with Cu at 42MeV evidence a very efficient sputtering of N whose yield (5×10 3 atom/ion), for a film with a thickness of just 100 nm, suggest that the origin of the sputtering has an electronic nature. This N depletion was observed to be responsible for new phase formation ( Cu2 O) and pure Cu [4]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a review of direct-drive shock ignition studies done as alternative for the Laser Mega-Joule to achieve high thermonuclear gain. One-dimensional analysis of HiPER-like Shock-ignited target designs is presented. It is shown that high gain can be achieved with shock ignition for designs which do not ignite only from the laser compression. Shock ignition is achieved for different targets of the fast ignition family which are driven by an absorbed energy between 100 kJ and 850kJ and deliver thermonuclear energies between 10-130 MJ. Shock-Ignition of Direct-Drive Double-Shell non-cryogenic target is also addressed. 2D results concerning the LMJ irradiation geometry are presented. Few systematic analyses are performed for the fuel assembly irradiation uniformity using the whole LMJ configuration or a part of the facility, and for the ignitor spike uniformity. Solutions for fuel assembly and shock ignition on LMJ using 2D calculations are presented. It is shown that high-gain shock-ignition is possible with intensity of each quad less than 1e15 W/cm2but low modes asymmetries displace the ignitor power in the spike towards higher powers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.