975 resultados para intramolecular catalysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pore-opening size of MCM-41 is tailored to be in the microporous region using a chemical vapor deposition technique for selective tailoring. Although the pore opening is narrowed, the internal pore body of MCM-41 remains unchanged so the pore volume retains a substantial portion (80%) of its original value. The adsorption equilibrium of nitrogen and benzene in the modified MCM-41 shows a type I isotherm, which significantly improves the adsorption performance of MCM-41 for low-concentration volatile organic compounds. The adsorption kinetics of benzene in the modified MCM-41 is also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Adrenaline is localized to specific regions of the central nervous system (CNS), but its role therein is unclear because of a lack of suitable pharmacologic agents. Ideally, a chemical is required that crosses the blood-brain barrier, potently inhibits the adrenaline-synthesizing enzyme PNMT, and does not affect other catecholamine processes. Currently available PNMT inhibitors do not meet these criteria. We aim to produce potent, selective, and CNS-active PNMT inhibitors by structure-based design methods. The first step is the structure determination of PNMT. Results: We have solved the crystal structure of human PNMT complexed with a cofactor product and a submicromolar inhibitor at a resolution of 2.4 Angstrom. The structure reveals a highly decorated methyltransferase fold, with an active site protected from solvent by an extensive cover formed from several discrete structural motifs. The structure of PNMT shows that the inhibitor interacts with the enzyme in a different mode from the (modeled) substrate noradrenaline. Specifically, the position and orientation of the amines is not equivalent. Conclusions: An unexpected finding is that the structure of PNMT provides independent evidence of both backward evolution and fold recruitment in the evolution of a complex enzyme from a simple fold. The proposed evolutionary pathway implies that adrenaline, the product of PNMT catalysis, is a relative newcomer in the catecholamine family. The PNMT structure reported here enables the design of potent and selective inhibitors with which to characterize the role of adrenaline in the CNS. Such chemical probes could potentially be useful as novel therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As determined by X-ray crystallography, Meldrum's acid derivatives 8–19 feature dihedral angles around the central CC double bonds between 3 and 83°. Hydrogen bonds between substituents RHN and the carbonyl groups favour near-planarity. Sterically demanding substituents favour large dihedral angles and zwitterionic structures as in formula 20. AM1 calculations of the structures are in excellent agreement with the experimental X-ray data, provided a dielectric field is incorporated (?= 40). This can be ascribed to the highly polar (zwitterionic) nature of the molecules. It is further predicted that all these molecules, including those that are stabilised in a planar form by intramolecular hydrogen bonds, undergo rapid rotation about the central CC bonds at room temperature. DFT calculations incorporating a dielectric field model (PCM) are in excellent agreement with the near-perpendicular arrangement of the alkene moiety in 19.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the B3LYP/6-31G* ab initio method, we have studied the rotation about the C=C bonds in 15 push-pull ethylenes of the general formula (X,Y)C=C(CHO)(2) [X, Y = NH2, NHCH3, N(CH3)(2), OCH3, SCH3] in the gas phase. Two stationary points (minimum and transition state) were located for all compounds. The geometry, dipole moments, natural bond orbital atomic charges, as well as the rotational barriers were examined. The torsion angle 0 depends essentially on the presence or absence of intramolecular hydrogen bonds, and the barrier is a function of the torsion angle. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unusual chiral heterocyclic systems, trioxabicyclo[3.3.1]nona-3,7-dienes (bridged bisdioxines), are incorporated as novel spacer molecules into macrocyclic polyether ring systems of various sizes (8, 9 as well as 11-15) by cyclocondensation reaction of the! bisacid chloride 4b or bisesters 6,7 and 10, with several ethylene glycols. The 2:2 macrocycles 12-14 are obtained in approximately 50:50 mixtures of diastereomers. These conclusions are mainly based on HPLC data presented in Table I as well as X-ray analyses of (1R,5R)-8c (space group Pbca, a = 10.163(3) Angstrom, b = 18.999(4) Angstrom, c = 36.187(10) Angstrom, V = 6987(3) Angstrom(3), Z = 8, d(calc) = 1.218 g cm(-3), 6974 reflections, R = 0.0553.), mesolrac-11 (space group P (1) over bar, a = 10.472(5) Angstrom, b = 16.390(5) Angstrom, c = 17.211(5) Angstrom, alpha = 98.69(2)degrees, beta = 93.04(2)degrees, gamma = 98.52(2)degrees, V = 2879.3(18) Angstrom(3), Z = 2, d(calc) = 1.173 g cm(-3), 11,162 reflections, R = 0.0945) and meso-12 (space group P2(1)/c, a = 9.927(2), b = 18.166(3), c = 17.820(3) Angstrom, beta = 96.590(10)degrees, V = 3192.3(10)Angstrom(3), Z = 4, D-c = 1.109 g cm(-3), 3490 reflections, R = 0.0646). The 1:1 macrocycles 8b,c are also formed by intramolecular transesterification of the open-chain bisesters 7b,c and their formation is favored by the use of metal ions as templates. The bridged bisdioxine moieties in 8b and 12 are converted into the corresponding chiral tetra-oxaadamantane spacers to afford macrocycles 16 and 17. Preliminary metal ion complexation studies with selected species (8c, 11-14) were also performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal structures have been determined for free Escherichia coli hypoxanthine phosphoribosyltransferase (HPRT) (2.9 Angstrom resolution) and for the enzyme in complex with the reaction products, inosine 5'-monophosphate (IMP) and guanosine 5-monophosphate (GMP) (2.8 Angstrom resolution). Of the known 6-oxopurine phosphoribosyltransferase (PRTase) structures, E. coli HPRT is most similar in structure to that of Tritrichomonas foetus HGXPRT, with a rmsd for 150 Calpha atoms of 1.0 Angstrom. Comparison of the free and product bound structures shows that the side chain of Phe156 and the polypeptide backbone in this vicinity move to bind IMP or GMP. A nonproline cis peptide bond, also found in some other 6-oxopurine PRTases, is observed between Leu46 and Arg47 in both the free and complexed structures. For catalysis to occur, the 6-oxopurine PRTases have a requirement for divalent metal ion, Usually Mg2+ in vivo. In the free structure, a Mg2+, is coordinated to the side chains of Glu103 and Asp104. This interaction may be important for stabilization of the enzyme before catalysis. E. coli HPRT is unique among the known 6-oxopurine PRTases in that it exhibits a marked preference for hypoxanthine as substrate over both xanthine and guanine. The structures suggest that its substrate specificity is due to the modes of binding of the bases. In E. coli HPRT, the carbonyl oxygen of Asp 163 would likely form a hydrogen bond with the 2-exocyclic nitrogen of guanine (in the HPRT-guanine-PRib-PP-Mg2+ complex). However, hypoxanthine does not have a 2-exocyclic atom and the HPRT-IMP structure suggests that hypoxanthine is likely to occupy a different position in the purine-binding pocket.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrolytic kinetic resolution (HKR) of functionalised epoxides using (salen)Co(OAc) complexes provides enantiomerically enriched epoxides and diols, which have been transformed into important insect sex pheromones. In this general approach, (-)-(R)- and (+)-(S)-10-methyldodecyl acetates from the smaller tea tortrix moth were obtained, as was (-)-(R)-10-methyltridecan-2-one from the southern corn rootworm. The (S)-epoxide obtained from undec-1-en-6-yne was transformed to (-)-(R)-(Z)-undec-6-en-2-ol (Nostrenol) from ant-lions. HKR of appropriate bisepoxides was also investigated, and transformations of the resulting bisepoxides and epoxydiols provided (-)-(1R,7R)-1,7-dimethylnonylpropanoate from corn rootworms, (-)-(6R,12R)-6,12-dimethylpentadecan-2-one from the female banded cucumber beetle, and (-)-(2S,11S)-2,11-diacetoxytridecane and (+)-(2S,12S)-2,12-diacetoxytridecane from female pea-midges. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cattle tick, Boophilus microplus, is a major pest of cattle in Australia, Central and South America, and parts of Africa and Asia. Control of ticks with organophosphates (OPs) and carbamates, which target acetylcholinesterases (AChE), led to evolution of resistance to these pesticides. Alleles at the locus studied here, AChE2, from OP-susceptible female ticks from Australia and Mexico differed at 46 of 1689 nucleotide positions (20 putative amino acid differences) whereas alleles from three strains of OP-resistant ticks from Australia differed with the allele from the Australian susceptible ticks at six to 13 nucleotide positions (three to six putative amino acid differences). However, the role, if any, of these polymorphisms in the OP-resistance phenotype is unknown. Certainly none of the polymorphisms correspond to sites in ACK that are involved in catalysis or binding of acetylcholine in other organisms. Both of the AChE loci of B. microplus, AChE1 and AChE2, are apparently expressed in synganglia; AChE1 is also expressed in salivary glands and ovaries, in OP-susceptible and OP-resistant ticks. This seems to contradict studies of enzyme kinetics, which indicated that only one form of AChE was present in the synganglia, the site of the action of OPs, in this species of tick. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PrrC from Rhodobacter sphaeroides provides the signal input to a two-component signal transduction system that senses changes in oxygen tension and regulates expression of genes involved in photosynthesis (Eraso, J.M. and Kaplan, S. (2000) Biochemistry, 39, 2052-2062; Oh, J.-I. and Kaplan, S. (2000) EMBO J. 19, 42374247). It is also a homologue of eukaryotic Sco proteins and each has a C-x-x-x-C-P sequence. In mitochondrial Sco proteins these cysteines appear to be essential for the biogenesis Of the Cu-A centre of respiratory cytochrome oxidase. Overexpression and purification of a water-soluble and monomeric form of PrrC has provided sufficient material for a chemical and spectroscopic study of the properties of the four cysteine residues of PrrC, and its ability to bind divalent cations, including copper. PrrC expressed in the cytoplasm of Escherichia coli binds Ni2+ tightly and the data are consistent with a mononuclear metal site. Following removal of Ni2+ and formation of renatured metal-free rPrrC (apo-PrrC), Cu2+ could be loaded into the reduced form of PrrC to generate a protein with a distinctive UV-visible spectrum, having absorbance with a lambda(max) of 360 nm. The copper:PrrC ratio is consistent with the presence of a mononuclear metal centre. The cysteines of metal-free PrrC oxidise in the presence of air to form two intramolecular disulfide bonds, with one pair being extremely reactive. The cysteine thiols with extreme O-2 sensitivity are involved in copper binding in reduced PrrC since the same copper-loaded protein could not be generated using oxidised PrrC. Thus, it appears that PrrC, and probably Sco proteins in general, could have both a thiol-disulfide oxidoreductase function and a copper-binding role. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (greater than or equal to2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [C-14]-labelled species) showed that adduct formation was much greater for iso-vTA-G. When [C-14]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New amino acids are reported in which component macrocycles are constrained to mimic tripeptides locked in a beta-strand conformation. The novel amino acids involve macrocycles functionalized with both an N- and a C-terminus enabling addition of appendages at either end to modify receptor affinity, selectivity, or membrane permeability. We show that the cycles herein are effective templates within inhibitors of HIV-1 protease. Eleven compounds originating from such bifunctionalized cyclic templates are potent inhibitors of HIV-1 protease (Ki 0.3-50 nM; pH 6.5, I = 0.1 M). Unlike normal peptides comprising amino acids, five of these macrocycle-containing compounds are potent antiviral agents with sub-micromolar potencies (IC50 170-900 nM) against HIV-1 replication in human MT2 cells. The most active antiviral agents are the most lipophilic, with calculated values of LogD(6.5) greater than or equal to 4. All molecules have a conformationally constrained 17-membered macrocyclic ring that has been shown to structurally mimic a tripeptide segment (Xaa)-(Val/Ile)-(Phe/Tyr) of a peptide substrate in the extended conformation. The presence of two trans amide bonds and a para-substituted aromatic ring prevents intramolecular hydrogen bonds and fixes the macrocycle in the extended conformation. Similarly constrained macrocycles may be useful templates for the creation of inhibitors for the many other proteins and proteases that recognize peptide beta-strands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.