998 resultados para internal reconstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal waves are an important factor in the design of drill operations and production in deep water, because the waves have very large amplitude and may induce large horizontal velocity. How the internal waves occur and propagate over benthal terrain is of great concern for ocean engineers. In the present paper, we have formulated a mathematical model of internal wave propagation in a two-layer deep water, which involves the effects of friction, dissipation and shoaling, and is capable of manifesting the variation of the amplitude and the velocity pattern. After calibration by field data measured at the Continental Slope in the Northern South China Sea, we have applied the model to the South China Sea, investigating the westward propagation of internal waves from the Luzon Strait, where internal waves originate due to the interaction of benthal ridge and tides. We find that the internal wave induced velocity profile is obviously characterized by the opposite flow below and above the pycnocline, which results in a strong shear, threatening safety of ocean structures, such as mooring system of oil platform, risers, etc. When internal waves propagate westwards, the amplitude attenuates due to the effects of friction and dissipation. The preliminary results show that the amplitude is likely to become half of its initial value at Luzon Strait when the internal waves propagate about 400 kilometers westwards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel account of the theory of commutative spectral triples and their two closest noncommutative generalisations, almost-commutative spectral triples and toric noncommutative manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characterisations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes's reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the process clarify folklore concerning stability of properties of spectral triples under suitable perturbation of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction theorem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and, as an application of this global-analytic perspective, obtain a general result relating the spectral action on the total space of a finite normal compact oriented Riemannian cover to that on the base space. Throughout, we discuss the relevant refinements of these definitions and results to the case of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a reconstruction theorem for toric noncommutative manifolds.

Relevância:

20.00% 20.00%

Publicador: