886 resultados para interleukin 2 receptor
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The myeloid differentiation factor 88 (MyD88) plays a pivotal role in Toll-like receptor (TLR)- and interleukin-1 receptor (IL-1R)-induced osteoclastogenesis. We examined the role of MyD88 on p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and nucleotide-binding oligomerization domain (Nod) induction by lipopolysaccharide (LPS) and IL-1 beta, and their effect on receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) production in bone marrow stromal cell (BMSC). RANKL, Nod1, Nod2, NF-κB, and p38 protein levels were determined by Western blot. Nod2 was stimulated with muramyl dipeptide (MDP) prior to TLR4 stimulation with LPS. MyD88 deficiency markedly inhibited RANKL expression after LPS stimulation and increased OPG messenger RNA (mRNA) production. Also, MyD88 was necessary for NF-κB and p38 MAPK activation. MDP alone did not induce RANKL and OPG expressions; however, when combined with LPS, their expressions were significantly increased (p < 0.05). Our results support that MyD88 signaling has a pivotal role in osteoclastogenesis thought NF-κB and p38 activation. Nod2 and especially Nod1 levels were influenced by MyD88.
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Blockade of central angiotensin receptors with the specific antagonist [Leu8]-ANG II abolished water ingestion and water and sodium excretion induced by infusion of angiotensin II (ANGII) into the lateral ventricle (LV) of rats. The antagonist reduced but did not suppress the salt appetite induced by ANGII infusion. Subcutaneous injection of deoxycorticosterone acetate (DOCA) caused increases in water and 3% NaCl ingestion and decreases in sodium excretion. When central ANGII infusion was combined with peripheral DOCA, the water intake was similar to that induced by ANGII alone and the ingestion of 3% NaCl was increased, whereas sodium excretion was inhibited. When ANGII was infused alone, a detailed temporal analysis of fluid and sodium balance showed a negative balance similar those saline controls that persisted throughout the experiment. Combined administration of ANGII and DOCA induce significant changes in water and sodium balance. Sodium and water maintained a positive balance through out the 8-h experiment. The data support an interaction of central ANGII and DOCA on sodium intake and water and sodium balance. © 1994.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysine (K) residues in histones H3 and H4. Histone biotinylation marks play important roles in the repression of genes and retrotransposons. Preliminary studies suggested that K16 in histone H4 is a target for biotinylation by HCS. Here we demonstrated that H4K16bio is overrepresented in repeat regions {pericentromeric alpha satellite repeats; long terminal repeats (LTR)} compared with euchromatin promoters. H4K16bio was also enriched in the repressed interleukin-2 gene promoter. The enrichment at LTR22 and promoter 1 of the sodium-dependent multivitamin transporter (SMVT) depended on biotin supply; and was significantly lower in fibroblasts from an HCS-deficient patient compared with an HCS wild-type control. We conclude that H4K16bio is a real phenomenon and plays a role in the transcriptional repression of repeats and genes. HCS catalyzes the covalent binding of biotin to carboxylases, in addition to its role as a histone biotinyl ligase. HCS null individuals are not viable whereas HCS deficiency is linked to developmental delays and phenotypes such as short life span and low stress resistance. Here, we developed a 96-well plate assay for high-throughput analysis of HCS based on the detection of biotinylated p67 using IRDye-streptavidin and infrared spectroscopy. We demonstrated that the catalytic activity of rHCS depends on temperature and time, and proposed optimal substrate and enzyme concentrations to ensure ideal measurement of rHCS activity and its kinetics. Additionally, we demonstrated that this assay is sensitive enough to detect biotinylation of p67 by endogenous HCS from Jurkat lymphoid cells.
Resumo:
Some mechanisms have been proposed to explain the role of bradykinin on glucose homeostasis and some studies reported that the BDKRB2 +9/-9 polymorphism was associated to the transcriptional activity of the receptor. In this scenario, the main aim of this study was to evaluate the association of the BDKRB2 +9/-9 polymorphism with diabetes mellitus risk in the Brazilian general population. This study included 1,032 subjects of the general urban population. Anthropometrical, blood pressure, biochemical, and genotype analyses for the BDKRB2 +9/-9 bp insertion/deletion polymorphism were performed. Individuals carrying +9/+9 or +9/-9 genotypes had higher glucose values (84.5 mg/dL versus 80.6 mg/dL, resp.) and higher frequency of diabetes mellitus (7.6% versus 3.6%, resp.) compared to individuals carrying -9/-9, adjusting for age and gender. In addition, higher diabetes mellitus risk was associated to presence of the +9/+9 or +9/-9 genotypes (OR = 1.91; 95% CI = 1.09-4.19; P = 0.03). Our data suggest that the BDKRB2 +9/-9 polymorphism may act as a genetic modulator of glucose homeostasis. It was previously associated to insulin sensitivity, glucose uptake, and insulin secretion, and, in this study, data suggest that the polymorphism may increase susceptibility to chronic metabolic conditions such as diabetes in the Brazilian population.
Resumo:
Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The medullary raphe (MR) is a putative central chemoreceptor site, contributing to hypercapnic respiratory responses elicited by changes in brain PCO2/pH. Purinergic mechanisms in the central nervous system appear to contribute to central chemosensitivity. To further explore the role of P2 receptors within the rostral and caudal MR in relation to respiratory control in room air and hypercapnic conditions, we performed microinjections of PPADS, a non-selective P2X antagonist, in conscious rats. Microinjections of PPADS into the rostral or caudal MR produced no changes in the respiratory frequency, tidal volume and ventilation in room air condition. The ventilatory response to hypercapnia was attenuated after microinjection of PPADS into the rostral but not in the caudal MR when compared to the control group (vehicle microinjection). These data suggest that P2X receptors in the rostral MR contribute to the ventilatory response to CO2, but do not participate in the tonic maintenance of ventilation under room air condition in conscious rats. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The monodentate cis-[Ru(phen)(2)(hist)(2)](2+) 1R and the bidentate cis-[Ru(phen)(2)(hist)](2+) 2A complexes were prepared and characterized using spectroscopic (H-1, (H-1-H-1) COSY and (H-1-C-13) HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 x 10(-3) mol L-1 for (1R + 2A) and 6.43 x 10(-4) mol L-1 for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH3CN converted the starting complexes into cis-[Ru(phen)(2)(CH3CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 x 10(-6) mol L-1). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC50 of 21 mu mol L-1 (referred to risvagtini, IC50 181 mu mol L-1 and galantamine IC50 0.006 mu mol L-1) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 mu mol L-1). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents.
Resumo:
Insulin and the inhibition of the reninangiotensin system have independent benefits for ischemiareperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemiareperfusion. Isolated hearts were perfused (Langendorff technique) with KrebsHenseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was similar to 31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (similar to 2.2 times) in all groups vs. group KH and was similar to 35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was similar to 28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects.
Resumo:
To detect expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) in oocytes, and their receptor type 2 receptor for BMPs (BMPR2) in cumulus cells in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization (IVF), and determine if BMPR2, BMP15, and GDF9 expression correlate with hyperandrogenism in FF of PCOS patients. Prospective case-control study. Eighteen MII-oocytes and their respective cumulus cells were obtained from 18 patients with PCOS, and 48 MII-oocytes and cumulus cells (CCs) from 35 controls, both subjected to controlled ovarian hyperstimulation (COH), and follicular fluid (FF) was collected from small (10-14 mm) and large (> 18 mm) follicles. RNeasy Micro Kit (Qiagen(A (R))) was used for RNA extraction and gene expression was quantified in each oocyte individually and in microdissected cumulus cells from cumulus-oocyte complexes retrieved from preovulatory follicles using qRT-PCR. Chemiluminescence and RIA assays were used for hormone assays. BMP15 and GDF9 expression per oocyte was higher among women with PCOS than the control group. A positive correlation was found between BMPR2 transcripts and hyperandrogenism in FF of PCOS patients. Progesterone values in FF were lower in the PCOS group. We inferred that BMP15 and GDF9 transcript levels increase in mature PCOS oocytes after COH, and might inhibit the progesterone secretion by follicular cells in PCOS follicles, preventing premature luteinization in cumulus cells. BMPR2 expression in PCOS cumulus cells might be regulated by androgens.