949 resultados para iliac blood flow


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on a case of a patient with angiosarcoma (AS) of the right atrium with superior vena cava syndrome associated with urticaria and polyarthralgias, who died soon after surgery, the authors present a brief review of the subject of cardiac AS, an extremely rare pathology, usually diagnosed late due to its non-specific symptomatology. Several topics are discussed, including mechanisms of clinical manifestations caused by blood flow obstruction and valve dysfunction, local invasion with arrhythmias and pericardial effusion, embolic phenomena and constitutional symptoms. Imaging and histopathologic methods of diagnosis are considered, as well as references to cytogenetic analysis. Surgery is the first treatment choice, but heart AS are frequently not completely resectable and concomitant metastases at the time of surgery are common, both usually leading to a dismal prognosis. Chemotherapy, radiotherapy and even heart transplantation do not substantially improve the survival of these patients. Urticaria is not generally assumed by most authors to be associated with malignancy, but there are rare reports of its association with some malignant tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: (i) To investigate whether pulsatility index (PI) and mean flow velocities (MFV) are altered in glaucoma patients. (ii) To evaluate the significance of PI in retrobulbar autoregulation capacity. METHODS: Patients with primary open-angle glaucoma (POAG; n = 49), normal tension glaucoma (NTG; n = 62) and healthy controls (n = 48) underwent colour Doppler imaging measurements of the retrobulbar vasculature. Kruskal-Wallis test was used to compare variables between the three diagnostic groups. Restricted cubic splines were used to determine nonlinearities between the resistive index (RI) and PI correlations. RESULTS: Mean flow velocities (MFV) were lower in both short posterior ciliary arteries (SCPA) and central retinal arteries (CRA) from the two glaucoma groups (p < 0.04 versus healthy controls). No differences were detected in RI or PI in any arteries of the three diagnostic groups (p > 0.08). In healthy individuals, correlations between RI and PI were linear in all arteries. In both POAG and NTG patients, CRA presented a nonlinear curve with a cutpoint at RI 0.77 (p < 0.001) and 0.61 (p = 0.03), respectively, above which the slope increased nearly five- and tenfold (POAG: 1.96 to 10.06; NTG: -0.46-4.06), respectively. A nonlinear correlation in the ophthalmic artery was only observed in NTG patients, with a cutpoint at RI 0.82 (p < 0.001), above which the slope increased from 3.47 to 14.03. CONCLUSIONS: Glaucoma patients do not present the linear relationships between RI and PI observed in healthy individuals. Their nonlinear relations may be indicative of an altered autoregulation and suggest a possible threshold RI could be determined above which autoregulatory disturbances become more relevant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: Recently, the absence of spontaneous venous pulsation (SVP) has been suggested as a vascular risk factor for primary open-angle glaucoma (POAG). As the mechanism behind this phenomenon is still unknown, the authors have studied this vascular component using colour Doppler imaging (CDI). METHODS: A total of 236 patients were divided into three diagnostic groups: healthy controls (81), POAG (86) and normal tension glaucoma (NTG; 69). All subjects were submitted to CDI studies of the retrobulbar circulation, intraocular pressure measurements and assessment of SVP existence. Mann-Whitney, chi-square contingency tables and Spearman correlations were used to explore differences and correlations between variables in the diagnostic groups. RESULTS: Eighty-two percent of healthy controls had SVP (66/81), while a smaller numbers were registered in both glaucoma groups: POAG - 50% (43/86); NTG - 51% (35/69). In NTG patients, but not in POAG patients, the prevalence of the SVP phenomenon decreases with increased glaucoma damage (p = 0.04; p = 0.55, respectively). Overall glaucoma patients from both groups had lower central retinal vein (CRV) velocities than the healthy controls (p < 0.05). NTG patients with SVP had less severe visual field defects (mean defect -6.92 versus -11.1, p < 0.05), higher [correction added after online publication 21 September 2012; the word 'higher' has been inserted to replace the word 'lower'] peak systolic and mean flow velocities in the central retinal artery (p < 0.01; p < 0.05, respectively) as well as higher [correction added after online publication 21 September 2012; the word higher has been inserted to replace the word lower] maximal velocities and RI of the CRV (p < 0.02; p < 0.05, respectively). CONCLUSIONS: Glaucoma patients have a decrease in CRV velocities. SVP is less prevalent in glaucoma patients than in healthy individuals. This phenomenon apparently reflects different hemodynamic patterns in the central retinal vessels. This variable may be of particular importance in NTG patients, where it may be associated with more advanced functional damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ex utero intrapartum treatment is a rare surgical procedure performed in cases of expected postpartum fetal airway obstruction. The technique lies on a safe establishment of a patent airway during labor in anticipation of a critical respiratory event, without interrupting maternal-fetal circulation. Anesthetic management is substantially different from that regarding standard cesarean delivery and its main goals include uterine relaxation, fetal anesthesia and preservation of placental blood flow. We present the case of an ex utero intrapartum treatment procedure performed on a fetus with a large cervical lymphangioma and prenatal evidence of airway compromise. Modifications to the classic ex utero intrapartum treatment management strategies were successfully adopted and will be discussed in the following report.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To determine the correlation between ocular blood flow velocities and ocular pulse amplitude (OPA) in glaucoma patients using colour Doppler imaging (CDI) waveform analysis. METHOD: A prospective, observer-masked, case-control study was performed. OPA and blood flow variables from central retinal artery and vein (CRA, CRV), nasal and temporal short posterior ciliary arteries (NPCA, TPCA) and ophthalmic artery (OA) were obtained through dynamic contour tonometry and CDI, respectively. Univariate and multiple regression analyses were performed to explore the correlations between OPA and retrobulbar CDI waveform and systemic cardiovascular parameters (blood pressure, blood pressure amplitude, mean ocular perfusion pressure and peripheral pulse). RESULTS: One hundred and ninety-two patients were included [healthy controls: 55; primary open-angle glaucoma (POAG): 74; normal-tension glaucoma (NTG): 63]. OPA was statistically different between groups (Healthy: 3.17 ± 1.2 mmHg; NTG: 2.58 ± 1.2 mmHg; POAG: 2.60 ± 1.1 mmHg; p < 0.01), but not between the glaucoma groups (p = 0.60). Multiple regression models to explain OPA variance were made for each cohort (healthy: p < 0.001, r = 0.605; NTG: p = 0.003, r = 0.372; POAG: p < 0.001, r = 0.412). OPA was independently associated with retrobulbar CDI parameters in the healthy subjects and POAG patients (healthy CRV resistance index: β = 3.37, CI: 0.16-6.59; healthy NPCA mean systolic/diastolic velocity ratio: β = 1.34, CI: 0.52-2.15; POAG TPCA mean systolic velocity: β = 0.14, CI 0.05-0.23). OPA in the NTG group was associated with diastolic blood pressure and pulse rate (β = -0.04, CI: -0.06 to -0.01; β = -0.04, CI: -0.06 to -0.001, respectively). CONCLUSIONS: Vascular-related models provide a better explanation to OPA variance in healthy individuals than in glaucoma patients. The variables that influence OPA seem to be different in healthy, POAG and NTG patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master of Biomedical Engineering

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMO: Na descrição deste estudo foi utilizada a terminologia anatómica da Sociedade Brasileira de Anatomia adaptada ao português por J. A. Esperança-Pina de acordo com o tratado Anatomia Humana da Relação. Os actuais estudos sobre hipoacusia sensorioneural implicam um grupo crescente de situações, em que a lesão se situa ao nível da microvascularização coclear, daí que o conhecimento exacto da angiomorfologia normal se torne essencial na fase actual do conhecimento. A autora tem vindo a estudar, desde 1986, a angiomorfologia do ouvido Interno no modelo experimental, o Cobaio, utilizando várias técnicas microvasculares. sendo dado enfâse particular neste estudo à técnica de microscopia electrónica de varrimento em moldes vasculares. Os animais usados no presente estudo pertencem à espécie cavia porcellus, cobaio, por serem considerados na comunidade cientifica internacional como o melhor modelo experimental para estudo do ouvido interno, pelo facto de a morfologia coclear ser muito semelhante à do Homem e por isso ser um modelo fiável para cirurgia experimental e microdissecção. Este estudo foi realizado em 100 cobaios, cavia porcellus, de ambos os sexos com peso médio de 450g. A vascularização do ouvido interno, no cobaio como no homem, faz-se através dos ramos de divisão da artéria auditiva interna ou labiríntica. A artéria labiríntica origina-se como ramo colateral da artéria cerebelosa ântero-inferior a qual tem origem na artéria basilar ou na artéria vertebral. Embora no homem a artéria auditiva interna possa também destacar-se da artéria basilar e até da artéria vertebral, no cobaio em todos os casos estudados a sua origem verificou-se sempre na artéria cerebelosa ântero-inferior. A artéria labiríntica, ao passar abaixo do meato auditivo interno, divide-se na artéria vestibular anterior e na artéria coclear comum.A artéria vestibular anterior dirige-se para o nervo vestibular, emite vasa nervorum para este nervo e vasculariza o utrículo e os canais semicirculares. A artéria coclear comum origina dois ramos principais, a artéria vestíbulo‑coclear ou vestibular posterior no cobaio, a qual se destaca junto à espira basal da cóclea e a artéria coclear, como ramo terminal, que passa a denominar-se de artéria modiolar ou espiralada, após entrar no modíolo. A artéria modiolar ascende no modíolo promovendo através dos seus ramos colaterais e dos seus ramos terminais a microvascularização coclear, numa vascularização de órgão de tipo terminal. Ao longo do seu trajecto verificou‑se de modo constante uma redução gradual de calibre em cada uma das espiras, por emissão de ramos colaterais, sendo que o calibre da artéria na base da cóclea apresenta um valor que diminui gradualmente até ao ápice. A artéria modiolar origina em todo o seu trajecto ramos colaterais, cujo número diminui em valor absoluto da base para o ápice: Arteríolas radiárias internas, arteríolas de trajecto flexuoso que caminham junto às estruturas sensorioneurais da parede interna da cóclea, junto ao lábio timpânico da lâmina espiral óssea e na parede do próprio modíolo, que se relacionam intimamente com este. As arteríolas radiárias internas originam‑se no flanco da artéria modiolar espiralada. Contam‑se dez a doze em cada espira, extraordinariamente flexuosas desde a sua origem. As arteríolas radiárias internas originam como ramos colaterais, vários grupos de arteríolas de menor calibre, que vascularizam distintas regiões da parede interna da cóclea, as arteríolas do gânglio espiral, a rede espiral interna, as arteríolas de origem dos glomérulos de Schwalbe e a arteríola da lâmina basilar. As arteríolas radiárias externas importantes ramos colaterais da artéria modiolar espiralada promovem a vascularização de importantes estruturas da parede externa. Ao atingir o limite externo do ligamento espiral, as arteríolas radiárias externas dividem‑se em vários ramos arteriolares de menor calibre, ao longo da convexidade do limite externo do ligamento espiral, originando a rede capilar pós-estriada que ocupa a porção lateral do ligamento espiral e a rede capilar ad‑ -estriada, na sua porção mais medial em íntima relação com a estria vascular. A espira basal da cóclea apresenta grande riqueza de vascularização, com características particulares apenas a esta espira, a qual é metabolicamente a mais exigente. A arteríola da janela da cóclea aborda a janela da cóclea pela sua convexidade e divide-se numa rica rede vascular da qual emergem arteríolas pré-capilares que se ramificam em capilares, os quais se dirigem em profundidade penetrando a rampa timpânica da cóclea ao nível da espira basal. Importou neste estudo verificar quais as semelhanças em termos de calibre de estruturas análogas, na parede interna e na parede externa da cóclea, com particular incidência na rede capilar. Do estudo estatístico realizado com testes paramétricos de Tamahane e não paramétricos de Mann-Whitney, verifica-se que comparando todas as estruturas consideradas estas têm calibres diferentes, com excepção dos capilares da estria vascular e do ligamento espiral, pertencentes à parede externa da cóclea que têm calibres iguais aos capilares da rede espiral interna e aos capilares da parede interna da cóclea, dependentes das arteríolas da rede espiral interna. As redes capilares dependentes das arteríolas radiárias internas que vascularizam as estruturas sensorioneurais junto á parede interna do modiolo são em tudo semelhantes em termos de calibre às redes capilares da parede externa da cóclea, incluindo os capilares da estria vascular. Esta particularidade traduz num órgão com vascularização de tipo terminal,um mecanismo de controlo do fluxo sanguíneo coclear tão importante na parede interna como na parede externa da cóclea. ------------ ABSTRACT:Current studies on sensorineural hearing loss, imply a growing group of situations in which the lesion is located at the level of the cochlear microvasculature, hence the exact knowledge of normal angiomorfology becomes essential in current state of knowledge. The author has been studying since 1986, the angiomorfology of inner on the experimental model, the guinea pig, using various microvascular techniques being given particular emphasis in this study to the results of the technique of scanning electron microscopy on corrosion casts. The animals used in this study belong to the species cavia porcellus, guinea pig, to be considered in the international scientific community as the best experimental model for the study of the inner ear, the cochlear morphology is very similar to human and therefore a reliable model for experimental surgery and microdissection. This study was performed in 100 guinea pigs of both sexes with average weight of 450g. There shall be a brief description of embryology, anatomy and cochlear physiology in the light of developmental biology, regarding also the spatial location of the cochlea and the determinism of morphogenetic fields in their development and function. The cochlear transduction mechanism converts the sound wave in stimuli sound and so afferent auditory nerve fibres and deafness are closely related to the cochlear microvasculature. Cochlear ischemia is accompanied by immediate hearing loss. The different type of cochlear injury that leads to sensorineural deafness is well studied in presbycusis where an objective link with the audiometric pattern as been established. The sensory type of deafness, is closely related to the degeneracy of the organ of Corti and damage to the outer hair cells at the basal turn of the cochlea. Keeping in mind cochlear tonotopy with location of high frequency sounds at the level of the base of the cochlea, it explains the audiometric pattern with loss in high frequencies. The neural type of deafness, is characterized by neuronal loss with loss of descendant important neuronal afferents, with audiometric translation on a gradually curve with important loss of auditory discrimination. The metabolic type of deafness results in atrophy of the vascular stria, with consequent change in the potential of the endolymph by decreasing the vascular stria cells and changes in K + recycling mechanism. There is also a change in the morphology of the spiral ligament and the audiometric patern as a flattened curve with loss at all frequencies. Bearing in mind cochlear tonotopy and being characterized all types of sensorineural deafness, we may inquire to what extent the cochlear microvasculature, considering not only the cochlea as a whole but different regions of the inner wall and the outer wall of the cochlea, contributes to deafness. We analysed the entire cochlear morphology on scanning electron microscopy with particular emphasis on bone and membranous cochlea. The inner wall of the cochlea and intramodiolar structures such as the spiral ganglion, the morphology of its cell bodies and their axons are analyzed. The morphology of Corti’s organ is described in detail, with description and large detail of the inner and outer hair cells. Is then presented the study of the microvasculature itself. The spiral modiolar artery is observed with the diaphanization technique and the technique of scanning electron microscopy on corrosion vascular casts. After emergence of collateral branches of the greatest importance, the radiating internal and external arterioles, the modiolar artery gives rise to its terminal branches, the arterioles of the cochear apex. Arterial vasa vasorum and vasa nervorum are displayed with a great detail, which was not yet described in such detail in previous microvascular studies. The arterial radiating arterioles originate in the flank of the spiral modiolar artery in number of ten to twelve in each loop, and they vascularize through their branches the inner wall cochlear sensorineural structures located in the modiolus as the spiral ganglion and structures near the organ of Corti. Their caliber is above 20 μm on the basal turn and in the second loop it decreases to values between 12 and 20 μm, decreasing progressively to the apex of the cochlea.They arise near the modiolus or on their way in the spiral lamina forming vascular loops, and divide without presenting vascular constrictions in their divisions, originating new vascular loops of lower caliber. Internal ratiating arterioles originate as collateral branches several groups of smaller caliber arterioles, which vascularize distinct regions of the inner wall of the cochlea namely, the arterioles of the spiral ganglion, the internal spiral network, the arterioles of origin of the glomeruli of Schwalbe and the arterioles of the basilar membrane. The glomeruli of Schwalbe play an important functional role as relay-stations, in hemodynamic terms, to control the cochlear microvasculature. External radiating arterioles have their origin in the spiral modiolar artery, they are directed towards the outer wall of the cochlea and run through the roof of the scala vestibuli. Above the insertion of Reissner’s membrane on the external wall the external radiating arterioles originate the spiral ligament arterioles, which vascularize the spiral ligament, they divide into several arteriolar branches of smaller caliber, along the convexity of the outer edge of the spiral ligament. The connective tissue of the spiral ligament forms a mesh with supporting function of the highly specialized epithelium, where pericytes were identifiable. Next to its base there is the microvascular network of stria vascularis. The adstriated vascular network which is divided into a capillary network, the capillary network of stria vascularis. The stria vascularis, the only vascularized epithelium of the human body, plays an important role, forming an haemato-labyrintine barrier to assure labyrinthine endocochlear potential and transport of ions, essential for the mechanism of transduction of external hair cells. The cochlear basal turn has a special feature on its external wall, the region of the windows, the round windows giving access to scala tympani and the oval window thatleads into scala vestibuli, and so it is metabolic demanding. For their role in cochlear tonotopy the sensorineural structures and those of the external wall of the cochlea, are particularly vulnerable to hypoxia. Although the complementarity of all the techniques was important for three- -dimensional reconstruction of the microvasculature of the cochlea, the scanning electron microscopy technique, especially when we used the system Semafore was fundamental to perform precise morphometric mesures regarding all vascular structures.Regarding the capillaries of the inner and outer wall of the cochlea networks this technique allowed their characterization in morphometric terms. To conclude the capillaries of the inner wall and of the external wall of the cochlea have similar size. So although located at different cochlear regions, with a different functional role, in cochlear physiology these networks consist of capillaries of similar caliber. It seems to translate a cochlear blood flow control mechanism that is so important in the inner wall as in and the external wall of the cochlea to provide for in inner ear homeosthasia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment of wounds using conventional methods is frequently limited by inadequate local wound conditions, or by a poor systemic clinical situation. Vacuum system may promote faster granulation tissue formation, remove excessive exudate, increase blood flow in the wound, and attract the borders of the wound to the center, reducing its dimension. We present 3 cases of patients with difficult wounds, due to bad local conditions, or poor clinical situation, in whom we used a vacuum system to prepare the wound for the surgical closure. One patient had a pressure ulcer, another had a diabetic foot ulcer, and the third one had an open foot stump. In the 3 cases a significant improvement of the wound conditions was achieved after 7 to 8 days, allowing successful surgical treatment with flap or skin grafts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stents are rigid and perforated tubular structures, which are inserted into blood vessels in order to prevent or inhibit the constriction of blood flow, restoring the normal blood flow, when blood vessels are clogged, being used in 70% of angioplasties. These medical devices assume great importance in the treatment of cardiovascular diseases (CVD) which are the leading cause of death worldwide. In the European Union CVD account for 40% of deaths and assume an estimated annual cost of 196 billion euros[1]. Stents must possess certain requirements, in order to, adequately, perform its function, such as biocompatibility (so that its use does not c ause damage on the health of its user), mechanical strength, radiopacity (so that it is easy to view), longitudinal flexibility, ease of handling, corrosion resistance and having high strength and high radial expansion ability to recover. Stents can be made of different materials, but metals, particularly stainless steel, are the most common. However, metallic stents present several dRawbacks such as corrosion and restenosis, leading to health complications for the patient, or even death. In order to minimize these disadvantages, new materials, like fibrous materials, have been used [2]. Monofilaments present high potential for stents development because, in addition to its biocompatibility, these materials allow the application of various surface treatments, such as antibacterial coatings. Furthermore, monofilament exhibit excellent mechanical properties, like greater stiffness and good results when subjected to compression, tensile and bending forces, since these forces will be directly supported by the monofilament [3]. To minimize the reaction of the human body and Limit the adhesion of microorganisms to the stent surface, some coatings have been developed, including the use of novel metals with antimicrobial properties, like silver. The main objective of this study was the development of fibrous stents, incorporation of silver oxide nanocoating. For the development of the stent, polyester monofilaments with 0.27mm of diameter were used in braiding technology, with a mandrel diameter of 6mm and a braiding angle of 35⁰. The mechanical behaviour of the stent were evaluated by mechanical testing under longitudinal and radial compression, bending. The results of compressive strength tests are according with value from literature: 1.13 to 2.9 N for radial compression and 0. 16-5.28N to longitudinal compression. From literature is also possible to verify that stents must present 75% of unchanged diameter during the bending test and must possess a porosity between 70% and 80% [4]. The produced polyester stent presents values of 1.29N for radial compression, 0.23N for longitudinal compression, 80% of porosity and 85.5% of unchanged diameter, during bending tests. For the antibacterial functionalization, silver oxide nanocoatings were prepared, through reactive magnetron g, with an Ag target in an Ar +O2 atmosphere. In order to evaluate the nanostructure and morphology of the coatings, d ifferent technique s like X-ray diffraction (XRD), scanning electron microscopy (SEM) and and X- ray photoelectron spectroscopy (XPS were used. From the analyses of XRD it is possible to verify that the peaks corresponds to planes of Ag2 O and MATERIAIS 2015 Porto, 21-23 June, 2015 characterize a cubic phase. The presence of Ag2 O is corroborated by XPS spectrum, where it is possible to observe silver, not only, in oxide state, but a lso in mettalic state, and it is possible to verify the presence of silver clusters, confirmed by SEM analysis. Films’ roughness and topography, parameters influencing the wettability of the surface and microorganism adhesion, were measured by Atomic Force Microscopy (AFM), and it was observed that the roughness is very low (under 10 nm). Coatings’ hydrophobicity and surface tension parameters were determined by contact angle measurement, and it was verified the hydrophobic behavior of the coatings. For antibacterial tests were used Staphylococcus epidermidis strain (IE186) and Staphylococcus aureus(ATCC 6538), and halo inhibition zone tests were realized. Ag+release rates were studied by means of inductively coupled plasma mass spectrometry (ICP -MS). The obtained results suggest that silver oxide coatings do not modify significantly surface properties of the substrate, like hydrophobicity and roughness, and present antimicrobial properties for both bacteria used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.  

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rare association of pulmonary atresia with an intact septum was diagnosed through echocardiography in a fetus 32 weeks of gestational age. The diagnosis was later confirmed by echocardiography of the newborn infant and further on autopsy. The aortic valve was bicuspid with a pressure gradient of 81mmHg, and the right ventricle was hypoplastic, as were the pulmonary trunk and arteries, and the blood flow was totally dependent on the ductus arteriosus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To assess the benefit resulting from the use of abciximab associated with primary angioplasty. The following parameters were analyzed in-hospital, at 30 days, and 6 months: (a) flow in the culprit artery; (b) ventricular function; (c) combined outcome of death, acute myocardial infarction, and aditional revascularization. METHODS: From November 1997 to June 1999, a longitudinal nonrandomized study with historical data of 137 patients with acute myocardial infarction within the first 12 hours. Patients undergoing primary angioplasty and were divided into 2 groups: those receiving (A) abciximab (26) or (B) conventional therapy (111). TIMI flow and regional ventricular function estimated by the standard deviation (SD)/chordis index were analyzed. RESULTS: At the end of angioplasty, TIMI 3 flow was observed in 76.9% and 83.8% of the patients in groups A and B, respectively (P=0.58). In the reevaluation, patients with TIMI flow <3 showed a 100% improvement in group A and a 33% in group B (P<0.0001). A significant improvement (P<0.0001) in regional ventricular function, by SD/chordis index, occurred in each group; no significant difference between groups however, was observed (29.9% x 20.2%; P=0.58). A nonsignificant reduction in the combined outcome in the in-hospital phase (3.85% A x 9.0% B; P=0.34) and on the 30th day (4.0% x 12.0%; P=0.22) was observed in group A. CONCLUSION: Abciximab improved blood flow. Primary angioplasty improved regional ventricular function independent of antithrombotic therapy. Abciximab showed a trend toward reducing the combined outcome in the in-hospital phase and on the 30th day.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Local heating increases skin blood flow SkBF (thermal hyperemia). In a previous study, we reported that a first local thermal stimulus could attenuate the hyperemic response to a second one applied later on the same skin spot, a phenomenon that we termed desensitization. However, other studies found no evidence for desensitization in similar conditions. The aim of the present work was to test whether it was related to differences in instrumentation. METHODS: Twenty-eight healthy young males were studied. Two pairs of heating chambers, one custom-made (our study) and one commercial (other groups), were affixed to forearm skin. SkBF was measured with single-point laser-Doppler flowmetry (LDF) (780nm) in one pair, and laser-Doppler imaging (LDI) (633nm) in the other. A temperature step from 34 to 41°C, was applied for 30minutes and repeated after two hours. RESULTS: During the second thermal challenge, the plateau SkBF was lower than during the first thermal and was observed with each of the four combinations of SkBF measurement techniques and heating equipment (p<0.05 for all conditions, range -9% to -16% of the initial value). CONCLUSION: Desensitization of thermal hyperemia is not specific to peculiar operating conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After ischemic stroke, the ischemic damage to brain tissue evolves over time and with an uneven spatial distribution. Early irreversible changes occur in the ischemic core, whereas, in the penumbra, which receives more collateral blood flow, the damage is more mild and delayed. A better characterization of the penumbra, irreversibly damaged and healthy tissues is needed to understand the mechanisms involved in tissue death. MRSI is a powerful tool for this task if the scan time can be decreased whilst maintaining high sensitivity. Therefore, we made improvements to a (1) H MRSI protocol to study middle cerebral artery occlusion in mice. The spatial distribution of changes in the neurochemical profile was investigated, with an effective spatial resolution of 1.4 μL, applying the protocol on a 14.1-T magnet. The acquired maps included the difficult-to-separate glutamate and glutamine resonances and, to our knowledge, the first mapping of metabolites γ-aminobutyric acid and glutathione in vivo, within a metabolite measurement time of 45 min. The maps were in excellent agreement with findings from single-voxel spectroscopy and offer spatial information at a scan time acceptable for most animal models. The metabolites measured differed with respect to the temporal evolution of their concentrations and the localization of these changes. Specifically, lactate and N-acetylaspartate concentration changes largely overlapped with the T(2) -hyperintense region visualized with MRI, whereas changes in cholines and glutathione affected the entire middle cerebral artery territory. Glutamine maps showed elevated levels in the ischemic striatum until 8 h after reperfusion, and until 24 h in cortical tissue, indicating differences in excitotoxic effects and secondary energy failure in these tissue types. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.