997 resultados para hydrogen desorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen bonding is the most important non-covalent interaction utilised in building supramolecular assemblies and is preferred often as a means of construction of molecular, oligomeric as well as polymeric materials that show liquid crystalline properties. In this work, a pyridine based nematogenic acceptor has been synthesized and mixed with non-mesogenic 4-methoxy benzoic acid to get a hydrogen bonded mesogen. The existence of hydrogen bonding between the pyridyl unit and the carboxylic acid was established using FT-IR spectroscopy from the observation of characteristic stretching vibrations of unionized type at 2425 and 1927 cm(-1). The mesogenic acceptor and the complex have been investigated using C-13 NMR in solution, solid and liquid crystalline states. Together with the 2D separated local field NMR experiments, the studies confirm the molecular structure in the mesophase and yield the local orientational order parameters. It is observed that the insertion of 4-methoxy benzoic acid not only enhances the mesophase stability but also induces a smectic phase due to an increase in the core length of the hydrogen bonded mesogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rutile phase TiO2 nanoparticles have been successfully prepared at 120 degrees C for one day via the ionothermal method using imidazolium based functionalized ionic liquid. The obtained products have been characterized by various techniques. XRD pattern shows rutile phase with crystallite size similar to 15 nm. FTIR shows a band at similar to 410 cm(-1) assigned to Ti-O-Ti stretching vibrations and few other bands due to the presence of ionic liquid. UV-vis studies show maximum absorbance at similar to 215 nm due to the imidazolium moiety and a band at 316 nm due to TiO2 nanoparticles. TEM images show that the size of particle is similar to 30 nm. TG-DTA shows weight loss corresponding to the formation of stable TiO2 nanoparticles. The rutile TiO2 nanoparticle is a promising material for hydrogen generation through photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Schiff base metal complexes Cu-SPETNNO3 (1) and Ni-SPETNNO3 (2) SPETN=2,2-propane,1,3-diylbis(nitrilomethyldyne)pyridyl,phenolate] ] with hydrogen bonding groups have been synthesized and characterized by single-crystal X-ray diffraction. In both of the compounds nitrates occupy a crystallographic general position. In 1 the lattice nitrates are on the 2(1) screw axis while in 2 they are at the crystallographic inversion center. C-HOnitrate synthons (formed by the nitrate anions and peripheral hydrogen bonding groups of the metal complexes) are non-covalent building blocks in molecular-assembly and packing of the cationic Schiff base metal complexes (M=Ni2+, Cu2+), resulting in 2-D hydrogen bonded networks. The CuCu non-bonding contact in 1 is 3.268 angstrom while the Ni-Ni bonding distance in 2 is 3.437 angstrom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H-2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We here report what we believe to be an important method for studying hydrogen bonding in systems containing a paramagnetic centre. The technique of electron-nuclear double resonance ( ENDOR) has been applied to study the hydrogen-bond network around the AsO44-. centre in X-ray irradiated KH2AsO4. ENDOR transitions from several sets of hydrogen nuclei surrounding the centre were observed at 4.2 degrees K and the spectra for two sets of neighbouring nuclei are identified. The angular dependences for these spectra are fitted with a spin-Hamiltonian to obtain the isotropic and anisotropic magnetic hyperfine constants. The results are discussed in terms of the available spectroscopic and crystallographic data on KH2AsO4 and the order-disorder model of ferroelectrictricity in this class of crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104g/kg of biomass at SBR of 2.7. Further, significant enhancement in H-2 yield and H-2 to CO ratio is observed at higher SBR (SBR=1.5-2.7) compared with lower range SBR (SBR=0.75-1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency ((g)) are better in the latter case. With the increase in SBR, gasification efficiency ((g)) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9MJNm(-3) at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJNm(-3) at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H-2 yield, H-2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is no exaggeration to state that the energy crisis is the most serious challenge that we face today. Among the strategies to gain access to reliable, renewable energy, the use of solar energy has clearly emerged as the most viable option. A promising direction in this context is artificial photosynthesis. In this article, we briefly describe the essential features of artificial photosynthesis in comparison with natural photosynthesis and point out the modest success that we have had in splitting water to produce oxygen and hydrogen, specially the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three ternary co-crystals of the title compound are reported. The design strategy hinges on the identification of a robust synthon with O-H center dot center dot center dot N hydrogen bonds in a binary co-crystal. Construction of this module allows the tuning of pi center dot center dot center dot pi stacking interactions and weak hydrogen bonds to incorporate the third component into the crystal structure. Screening of various co-formers showed that a delicate balance of electrostatics is required for stacking to favor the formation of ternaries. A C-H center dot center dot center dot N hydrogen-bonded motif was also found to occur repetitively in the ternary co-crystals. The directional nature of weak hydrogen bonds allows them to be used effectively in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers how the properties of hydrogen bonded complexes, X-H center dot center dot center dot Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H center dot center dot center dot O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4-3.0 angstrom, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA) oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v) followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was >= 2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be > 12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bending at the valence angle N-C-alpha-C' (tau) is a known control feature for attenuating the stability of the rare intramolecular hydrogen bonded pseudo five-membered ring C-5 structures, the so called 2.0(5) helices, at Aib. The competitive 3(10)-helical structures still predominate over the C5 structures at Aib for most values of tau. However at Aib*, a mimic of Aib where the carbonyl 0 of Aib is replaced with an imidate N (in 5,6-dihydro-4H-1,3-oxazine = Oxa), in the peptidomimic Piv-Pro-Aib*-Oxa (1), the C(5)i structure is persistent in both crystals and in solution. Here we show that the i -> i hydrogen bond energy is a more determinant control for the relative stability of the C5 structure and estimate its value to be 18.5 +/- 0.7 kJ/mol at Aib* in 1, through the computational isodesmic reaction approach, using two independent sets of theoretical isodesmic reactions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A supramolecular approach that uses hydrogen-bonding interaction as a driving force to accomplish exceptional self-sorting in the formation of imine-based covalent organic cages is discussed. Utilizing the dynamic covalent chemistry approach from three geometrically similar dialdehydes (A, B, and D) and the flexible triamine tris(2-aminoethyl)amine (X), three new 3+2] self-assembled nanoscopic organic cages have been synthesized and fully characterized by various techniques. When a complex mixture of the dialdehydes and triamine X was subjected to reaction, it was found that only dialdehyde B (which has OH groups for H-bonding) reacted to form the corresponding cage B3X2 selectively. Surprisingly, the same reaction in the absence of aldehyde B yielded a mixture of products. Theoretical and experimental investigations are in complete agreement that the presence of the hydroxyl moiety adjacent to the aldehyde functionality in B is responsible for the selective formation of cage B3X2 from a complex reaction mixture. This spectacular selection was further analyzed by transforming a nonpreferred (non-hydroxy) cage into a preferred (hydroxy) cage B3X2 by treating the former with aldehyde B. The role of the H-bond in partner selection in a mixture of two dialdehydes and two amines has also been established. Moreover, an example of unconventional imine bond metathesis in organic cage-to-cage transformation is reported.