978 resultados para heavy vehicle simulation
Resumo:
Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.
Resumo:
By identifying energy waste streams in vehicles fuel consumption and introducing the concept of lean driving systems, a technological gap for reducing fuel consumption was identified. This paper proposes a solution to overcome this gap, through a modular vehicle architecture aligned with driving patterns. It does not address detailed technological solutions; instead it models the potential effects in fuel consumption through a modular concept of a vehicle and quantifies their dependence on vehicle design parameters (manifesting as the vehicle mass) and user behavior parameters (driving patterns manifesting as the use of a modular car in lighter and heavier mode, in urban and highway cycles). Modularity has been functionally applied in automotive industry as manufacture and assembly management strategies; here it is thought as a product development strategy for flexibility in use, driven by environmental concerns and enabled by social behaviors. The authors argue this concept is a step forward in combining technological solutions and social behavior, of which eco-driving is a vivid example, and potentially evolutionary to a lean, more sustainable, driving culture.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system
Resumo:
In this paper, we present a method for estimating local thickness distribution in nite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by di erent human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the bene ts of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and casted parts and is currently being used by Ford Motor Company.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.
Resumo:
This study develops a theoretical model that explains the effectiveness of the balanced scorecard approach by means of a system dynamics and feedback learning perspective. Presumably, the balanced scorecard leads to a better understanding of context, allowing managers to externalize and improve their mental models. We present a set of hypotheses about the influence of the balanced scorecard approach on mental models and performance. A test based on a simulation experiment that uses a system dynamics model is performed. The experiment included three types of parameters: financial indicators; balanced scorecard indicators; and balanced scorecard indicators with the aid of a strategy map review. Two out of the three hypotheses were confirmed. It was concluded that a strategy map review positively influences mental model similarity, and mental model similarity positively influences performance.
Resumo:
This study develops a theoretical model that explains the effectiveness of the balanced scorecard approach by means of a system dynamics and feedback learning perspective. Presumably, the balanced scorecard leads to a better understanding of context, allowing managers to externalize and improve their mental models. We present a set of hypotheses about the influence of the balanced scorecard approach on mental models and performance. A test based on a simulation experiment that uses a system dynamics model is performed. The experiment included three types of parameters: financial indicators; balanced scorecard indicators; and balanced scorecard indicators with the aid of a strategy map review. Two out of the three hypotheses were confirmed. It was concluded that a strategy map review positively influences mental model similarity, and mental model similarity positively influences performance.
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.
Resumo:
In this paper, two wind turbines equipped with a permanent magnet synchronous generator (PMSG) and respectively with a two-level or a multilevel converter are simulated in order to access the malfunction transient performance. Three different drive train mass models, respectively, one, two and three mass models, are considered in order to model the bending flexibility of the blades. Moreover, a fractional-order control strategy is studied comparatively to a classical integer-order control strategy. Computer simulations are carried out, and conclusions about the total harmonic distortion (THD) of the electric current injected into the electric grid are in favor of the fractional-order control strategy.
Resumo:
This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn.