948 resultados para gravitational lensing: strong


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that escapes detection and resists treatment. Tumour budding, defined as the presence of de-differentiated single tumour cells or small cell clusters at the invasive front of gastrointestinal carcinomas like colorectal, oesophageal, gastric and ampullary, is linked to adverse prognosis. Tumour budding has not yet been reported in PDAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symptomatic overdrainage in children with shunt-treated hydrocephalus represents one of the more difficult shunt-related diseases and may require repeated surgery. Gravity-assisted valve design has become a standard device to avoid overdrainage in many European pediatric hydrocephalus centers. However, the use of a gravitational valve for relieving symptoms associated with overdrainage has not yet been addressed. The goal of this study was to evaluate the effectiveness of a gravitational valve in the treatment of symptomatic overdrainage in children with shunts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S-4 (q, t). Both cases, elastic (epsilon = 1) and inelastic (epsilon < 1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6 <= phi <= 0.805, scaling is shown to hold: S-4 (q, t)/chi(4)(t) = s(q xi(t)). Both the dynamic susceptibility chi(4)(tau(alpha)) and the dynamic correlation length xi(tau(alpha)) evaluated at the alpha relaxation time tau(alpha) can be fitted to a power law divergence at a critical packing fraction. The measured xi(tau(alpha)) widely exceeds the largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a slow cluster and the correlation length are related by a robust power law, chi(4)(tau(alpha)) approximate to xi(d-p) (tau(alpha)), with an exponent d - p approximate to 1.6. This scaling is remarkably independent of epsilon, even though the strength of the dynamical heterogeneity at constant volume fraction depends strongly on epsilon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of regional filling of the lung and regional ventilation distribution is based on studies using stepwise inhalation of radiolabelled tracer gases, magnetic resonance imaging and positron emission tomography. We aimed to investigate whether these differences in ventilation distribution at different end-expiratory levels (EELs) and tidal volumes (V (T)s) held also true during tidal breathing. Electrical impedance tomography (EIT) measurements were performed in ten healthy adults in the right lateral position. Five different EELs with four different V (T)s at each EEL were tested in random order, resulting in 19 combinations. There were no measurements for the combination of the highest EEL/highest V (T). EEL and V (T) were controlled by visual feedback based on airflow. The fraction of ventilation directed to different slices of the lung (VENT(RL1)-VENT(RL8)) and the rate of the regional filling of each slice versus the total lung were analysed. With increasing EEL but normal tidal volume, ventilation was preferentially distributed to the dependent lung and the filling of the right and left lung was more homogeneous. With increasing V (T) and maintained normal EEL (FRC), ventilation was preferentially distributed to the dependent lung and regional filling became more inhomogeneous (p < 0.05). We could demonstrate that regional and temporal ventilation distribution during tidal breathing was highly influenced by EEL and V (T).