992 resultados para glycolytic enzyme binding
Resumo:
The class II major histocompatibility complex molecule I-A(g7) is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its beta chain. To identify the requirements for peptide binding to I-A(g7) and thereby potentially pathogenic T cell epitopes, we analyzed a known I-A(g7)-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9-27. NH2- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R21 and the minimum sequence for direct binding to purified I-A(g7) M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimally, p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-A(g7) deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-A(g7)-restricted T cell epitopes or eluted from I-A(g7). Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.
Resumo:
Xanthine phosphoribosyltransferase (XPRT; EC 2.4.2.22) from Escherichia coil is a tetrameric enzyme having 152 residues per subunit. XPRT catalyzes the transfer of the phosphoribosyl group from 5-phospho-alpha-D-ribosyl l-pyrophosphate (PRib-PP) to the 6-oxopurine bases guanine, xanthine, and hypoxanthine to form GMP, XMP, and IMP, respectively. Crystals grown in the absence of substrate or product were used to determine the structure of XPRT at a resolution of 1.8 Angstrom by multiple isomorphous replacement. The core structure of XPRT includes a five-stranded parallel B-sheet surrounded by three or-helices, which is similar to that observed in other known phosphoribosyltransferase (PRTase) structures. The XPRT structure also has several interesting features. A glutamine residue in the purine binding site may be responsible for the altered 6-oxopurine base specificity seen in this enzyme compared to other 6-oxopurine PRTases. Also, we observe both a magnesium ion and a sulfate ion bound at the PRib-PP binding site of XPRT. The sulfate ion interacts with Arg-37 which has a cis-peptide conformation, and the magnesium ion interacts with Asp-89, a highly conserved acidic residue in the PRib-PP binding site motif. The XPRT structure also incorporates a feature which has not been observed in other PRTase structures. The C-terminal 12 residues of XPRT adopt an unusual extended conformation and make interactions with a neighboring subunit. The very last residue, Arg-152, could form part of the active site of a symmetry-related subunit in the XPRT tetramer.
Resumo:
The efficient and correct folding of bacterial disulfide bonded proteins in vivo is dependent upon a class of periplasmic oxidoreductase proteins called DsbA, after the Escherichia coli enzyme. In the pathogenic bacterium Vibrio cholerae, the DsbA homolog (TcpG) is responsible for the folding, maturation and secretion of virulence factors. Mutants in which the tcpg gene has been inactivated are avirulent; they no longer produce functional colonisation pill and they no longer secrete cholera toxin. TcpG is thus a suitable target for inhibitors that could counteract the virulence of this organism, thereby preventing the symptoms of cholera. The crystal structure of oxidized TcpG (refined at a resolution of 2.1 Angstrom) serves as a starting point for the rational design of such inhibitors. As expected, TcpG has the same fold as E. coli DsbA, with which it shares similar to 40% sequence identity. Ln addition, the characteristic surface features of DsbA are present in TcpG, supporting the notion that these features play a functional role. While the overall architecture of TcpG and DsbA is similar and the surface features are retained in TcpG, there are significant differences. For example, the kinked active site helix results from a three-residue loop in DsbA, but is caused by a proline in TcpG (making TcpG more similar to thioredoxin in this respect). Furthermore, the proposed peptide binding groove of TcpG is substantially shortened compared with that of DsbA due to a six-residue deletion. Also, the hydrophobic pocket of TcpG is more shallow and the acidic patch is much less extensive than that of E. coli DsbA. The identification of the structural and surface features that are retained or are divergent in TcpG provides a useful assessment of their functional importance in these protein folding catalysts and is an important prerequisite for the design of TcpG inhibitors. (C) 1997 Academic Press Limited.
Resumo:
The SH3 domains of src and other nonreceptor tyrosine kinases have been shown to associate with the motif PXXP, where P and X stand for proline and an unspecified amino acid, but a motif that binds to the SH3 domain of myosin has thus far not been characterized. We previously showed that the SH3 domain of Acanthamoeba myosin-IC interacts with the protein Acan125. We now report that the Acan125 protein sequence contains two tandem consensus PXXP motifs near the C terminus. To test for binding, we expressed a polypeptide, AD3p, which includes 344 residues of native C-terminal sequence and a mutant polypeptide, AD3 Delta 977-994p, which lacks the sequence RPKPVPPPRGAKPAPPPR containing both PXXP motifs. The SH3 domain of Acanthamoeba myosin-IC bound AD3p and not AD3 Delta 977-994p, showing that the PXXP motifs are required for SH3 binding. The sequence of Acan125 is related overall to a protein of unknown function coded by Caenorhabditis elegans gene K07G5.1. The K07G5.1 gene product contains a proline-rich segment similar to the SH3 binding motif found in Acan125. The aligned sequences show considerable conservation of leucines and other hydrophobic residues, including the spacing of these residues, which matches a motif for leucine-rich repeats (LRRs). LRR domains have been demonstrated to be sites for ligand binding. Having an LRR domain and an SH3-binding domain, Acan125 and the C. elegans homologue define a novel family of bifunctional binding proteins.
Resumo:
To date, measurements of GH-binding protein (GHBP) during human pregnancy have been carried out using;assays susceptible to interference by the elevated levels of human placental GH typical of late gestation. We recruited a large cohort of pregnant women (n = 140) for serial measurements of GHBP and used the ligand immunofunctional assay for GHBP. For normal gravidas, GHBP levels fell throughout gestation. Mean levels were 1.07 nmol/L (SE = 0.18) in the first trimester, 0.90 nmol/L (SE = 0.08) at 18-20 weeks, 0.73 nmol/L (SE = 0.05) at 28-30 weeks, and 0.62 nmol/L (SE = 0.06) at 36-38 weeks. GHBP levels in the first trimester correlated significantly with maternal body mass index (r = 0.58; P < 0.01). GHBP levels in pregnancies complicated by noninsulin-dependent diabetes mellitus (NIDDM) were substantially elevated at all gestational ages. The mean value in the first quarter (2.29 nmol/L) was more than double the normal mean (P < 0.01). In contrast, patients with insulin-dependent diabetes mellitus (IDDM) showed reduced GHBP concentrations at 36-38 weeks. The correlation between body mass index and GHBP is consistent with a metabolic role for GHBP during pregnancy, as is the dramatic elevation in GHBP observed in cases of NIDDM. At 36 weeks gestation, GHBP was significantly elevated (P < 0.01) in those women whose neonates had low birth weight (
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).
Resumo:
DsbA is a protein-folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 Angstrom, and present a proposal for its interaction with peptide. The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified-the typo IV beta-turn Phe 63-Met 64-Gly 65-Gly 66, which connects the two domains. Three unique features on the active site surface of the DsbA molecule-a groove, hydrophobic pocket, and hydrophobic patch-form an extensive uncharged surface surrounding the active-sits disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active-site disulfide are uncharged in all nine DsbA proteins. A model for DsbA-peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active-site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.
Resumo:
The DNA-binding activities of AP-1 and Egr proteins were investigated in nuclear extracts of rat brain regions during ethanol withdrawal. Both DNA-binding activities were transiently elevated in the hippocampus and cerebellum 16 h after withdrawal. In the cerebral cortex, AP-1 and Egr DNA-binding activities increased at 16 h and persisted until 32 and 72 h, respectively. The AP-1 DNA-binding activities in all regions at all times after withdrawal were composed of FosB, c-Jun, JunB, and JunD. c-Fos was detected at all times in the cerebral cortex, at 16 h only in the hippocampus, and from 16 to 72 h in the cerebellum. Withdrawal severity did not affect the composition of the AP-1 DNA-binding activities. Two Egr DNA-binding activities were present in the cortex and hippocampus. The faster-migrating complex predominated in hippocampus, and only the slower-migrating complex (identified as Egr-1) was present in the cerebellum. The increase in DNA-binding activity of immediate early gene-encoded transcription factors supports their proposed role in initiating a cascade of altered gene expression underlying the long-term neuronal response to ethanol withdrawal.
Resumo:
Galectin-3 is a glycan-binding protein that mediates cell-cell and/or cell-extracellular matrix (ECM) interactions. Although galectin-3 is implicated in the progression of various types of cancers, the mechanisms by which galectin-3 enhances metastasis remain unclear. In order to elucidate the role of galectin-3 in the complex multistage process of cancer metastasis, we examined galectin-3 and galectin-3-binding site expression in a series of 82 spontaneous canine mammary tumors (CMT) and two CMT cell lines. Benign CMT tumors exhibited strong nuclear/cytoplasmic galectin-3 immunostaining, whereas malignant CMT tumors and metastases exhibited dramatically decreased galectin-3 expression with the majority of the immunostaining confined to the cytoplasm. Interestingly, intravascular tumor cells overexpressed galectin-3 regardless of their location. CMT-U27 xenografts displayed the same pattern of galectin-3 expression found in spontaneous malignant CMT. In parallel with the downregulation of galectin-3, malignant CMT displayed an overall loss of galectin-3-binding sites in the ECM and focal expression of galectin-3-binding sites mainly detected in intravascular tumor cells and endothelium. Furthermore, loss of galectin-3-binding sites was correlated with the downregulation of GLT25D1, a beta (1-O) galactosyltransferase that modifies collagen, and upregulation of stromal galectin-1. Finally, GLT25D1 mRNA expression was strikingly downregulated in malignant CMT-U27 compared with the benign cell line, and its expression was further de-creased in a galectin-3 knockdown CMT-U27 cell line. We therefore hypothesized that the loss of galectin-3-binding sites in the ECM in conjunction with the overexpression of galectin-3 in specific tumor cell subpopulations are crucial events for the development of mammary tumor metastases.
Resumo:
O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.
Resumo:
Albicidin phytotoxins are pathogenicity factors in a devastating disease of sugarcane known as leaf scald, caused by Xanthomonas albilineans. A gene (albD) from Pantoea dispersa has been cloned and sequenced and been shown to code for a peptide of 235 amino acids that detoxifies albicidin, The gene shows no significant homology at the DNA or protein level to any known sequence, but the gene product contains a GxSxG motif that is conserved in serine hydrolases, The AlbD protein, purified to homogeneity by means of a glutathione S-transferase gene fusion system, showed strong esterase activity on p-nitrophenyl butyrate and released hydrophilic products during detoxification of albicidins. AlbD hydrolysis of p-nitrophenyl butyrate and detoxification of albicidins required no complex cofactors, Both processes were strongly inhibited by phenylmethylsulfonyl fluoride, a serine enzyme inhibitor, These data strongly suggest that AlbD is an albicidin hydrolase, The enzyme detoxifies albicidins efficiently over a pH range from 5.8 to 8.0, with a broad temperature optimum from 15 to 35 degrees C, Expression of albD in transformed X. albilineans strains abolished the capacity to release albicidin toxins and to incite disease symptoms in sugarcane, The gene is a promising candidate for transfer into sugarcane to confer a form of disease resistance.
Resumo:
Paracoccidioides brasiliensis yeast cells can enter mammalian cells and may manipulate the host cell environment to favour their own growth and survival. Moreover, fibronectin and several other host extracellular matrix proteins are recognized by various components of the yeast cell extracts. The present study was designed to isolate and characterize a fibronectin-binding protein from P. brasiliensis. We also compared P. brasiliensis strain 18, tested before (Pb18a) and after (Pb18b) animal passage, in relation to its adhesion and invasion processes. Extracts from both samples, when cultured on blood agar solid medium, showed higher levels of protein expression than when the same samples were cultured on Fava-Netto solid medium, as demonstrated by two-dimensional electrophoresis and SDS-PAGE. Also, both Pb18a and Pb18b exhibited stronger adhesion to A549 epithelial cells when cultured on blood agar medium than when cultured on Fava-Netto medium. Ligand affinity binding assays revealed a protein of 54 kDa and pl 5.6 in P. brasiliensis cell-free extracts with the properties of a fibronectin-binding adhesin, which was characterized by tryptic digestion and mass spectroscopy as a homologue of enolase from P. brasiliensis. Antibody raised against this 54 kDa protein abolished 80 % of P. brasiliensis adhesion to A549 epithelial cells. Our results demonstrate that P. brasiliensis produces a fibronectin-binding adhesin, irrespective of the culture medium, and that this activity can be inhibited by a specific antibody and is involved in the adhesion of the fungus to pulmonary epithelial cells.
Resumo:
Egr-1 and related proteins are inducible transcription factors within the brain recognizing the same consensus DNA sequence. Three Egr DNA-binding activities were observed in regions of the naive rat brain. Egr-1 was present in all brain regions examined. Bands composed, at least in part, of Egr-2 and Egr-3 were present in different relative amounts in the cerebral cortex, striatum, hippocampus, thalamus, and midbrain. All had similar affinity and specificity for the Egr consensus DNA recognition sequence. Administration of the convulsants NMDA, kainate, and pentylenetetrazole differentially induced Egr-1 and Egr-2/3 DNA-binding activities in the cerebral cortex, hippocampus, and cerebellum. All convulsants induced Egr-1 and Egr-2 immunoreactivity in the cerebral cortex and hippocampus. These data indicate that the members of the Egr family are regulated at different levels and may interact at promoters containing the Egr consensus sequence to fine tune a program of gene expression resulting from excitatory stimuli.