919 resultados para genoma, genetica, dna, bioinformatica, mapreduce, snp, gwas, big data, sequenziamento, pipeline


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uno de los grandes retos de la HPC (High Performance Computing) consiste en optimizar el subsistema de Entrada/Salida, (E/S), o I/O (Input/Output). Ken Batcher resume este hecho en la siguiente frase: "Un supercomputador es un dispositivo que convierte los problemas limitados por la potencia de cálculo en problemas limitados por la E/S" ("A Supercomputer is a device for turning compute-bound problems into I/O-bound problems") . En otras palabras, el cuello de botella ya no reside tanto en el procesamiento de los datos como en la disponibilidad de los mismos. Además, este problema se exacerbará con la llegada del Exascale y la popularización de las aplicaciones Big Data. En este contexto, esta tesis contribuye a mejorar el rendimiento y la facilidad de uso del subsistema de E/S de los sistemas de supercomputación. Principalmente se proponen dos contribuciones al respecto: i) una interfaz de E/S desarrollada para el lenguaje Chapel que mejora la productividad del programador a la hora de codificar las operaciones de E/S; y ii) una implementación optimizada del almacenamiento de datos de secuencias genéticas. Con más detalle, la primera contribución estudia y analiza distintas optimizaciones de la E/S en Chapel, al tiempo que provee a los usuarios de una interfaz simple para el acceso paralelo y distribuido a los datos contenidos en ficheros. Por tanto, contribuimos tanto a aumentar la productividad de los desarrolladores, como a que la implementación sea lo más óptima posible. La segunda contribución también se enmarca dentro de los problemas de E/S, pero en este caso se centra en mejorar el almacenamiento de los datos de secuencias genéticas, incluyendo su compresión, y en permitir un uso eficiente de esos datos por parte de las aplicaciones existentes, permitiendo una recuperación eficiente tanto de forma secuencial como aleatoria. Adicionalmente, proponemos una implementación paralela basada en Chapel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Têm-se notado nos últimos anos um crescimento na adoção de tecnologias de computação em nuvem, com uma adesão inicial por parte de particulares e pequenas empresas, e mais recentemente por grandes organizações. Esta tecnologia tem servido de base ao aparecimento de um conjunto de novas tendências, como a Internet das Coisas ligando os nossos equipamentos pessoais e wearables às redes sociais, processos de big data que permitem tipificar comportamentos de clientes ou ainda facilitar a vida ao cidadão com serviços de atendimento integrados. No entanto, tal como em todas as novas tendências disruptivas, que trazem consigo um conjunto de oportunidades, trazem também um conjunto de novos riscos que são necessários de serem equacionados. Embora este caminho praticamente se torne inevitável para uma grande parte de empresas e entidades governamentais, a sua adoção como funcionamento deve ser alvo de uma permanente avaliação e monitorização entre as vantagens e riscos associados. Para tal, é fundamental que as organizações se dotem de uma eficiente gestão do risco, de modo que possam tipificar os riscos (identificar, analisar e quantificar) e orientar-se de uma forma segura e metódica para este novo paradigma. Caso não o façam, os riscos ficam evidenciados, desde uma possível perda de competitividade face às suas congéneres, falta de confiança dos clientes, dos parceiros de negócio e podendo culminar numa total inatividade do negócio. Com esta tese de mestrado desenvolve-se uma análise genérica de risco tendo como base a Norma ISO 31000:2009 e a elaboração de uma proposta de registo de risco, que possa servir de auxiliar em processos de tomada de decisão na contratação e manutenção de serviços de Computação em Nuvem por responsáveis de organizações privadas ou estatais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las tecnologías relacionadas con el análisis de datos masivos están empezando a revolucionar nuestra forma de vivir, nos demos cuenta de ello o no. Desde las grandes compañías, que utilizan big data para la mejora de sus resultados, hasta nuestros teléfonos, que lo usan para medir nuestra actividad física. La medicina no es ajena a esta tecnología, que puede utilizarla para mejorar los diagnósticos y establecer planes de seguimiento personalizados a los pacientes. En particular, el trastorno bipolar requiere de atención constante por parte de los profesionales médicos. Con el objetivo de contribuir a esta labor, se presenta una plataforma, denominada bip4cast, que pretende predecir con antelación las crisis de estos enfermos. Uno de sus componentes es una aplicación web creada para realizar el seguimiento a los pacientes y representar gráficamente los datos de que se dispone con el objetivo de que el médico sea capaz de evaluar el estado del paciente, analizando el riesgo de recaída. Además, se estudian las diferentes visualizaciones implementadas en la aplicación con el objetivo de comprobar si se adaptan correctamente a los objetivos que se pretenden alcanzar con ellas. Para ello, generaremos datos aleatorios y representaremos estos gráficamente, examinando las posibles conclusiones que de ellos pudieran extraerse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cet essai est présenté en tant que mémoire de maîtrise dans le cadre du programme de droit des technologies de l’information. Ce mémoire traite de différents modèles d’affaires qui ont pour caractéristique commune de commercialiser les données dans le contexte des technologies de l’information. Les pratiques commerciales observées sont peu connues et l’un des objectifs est d’informer le lecteur quant au fonctionnement de ces pratiques. Dans le but de bien situer les enjeux, cet essai discutera d’abord des concepts théoriques de vie privée et de protection des renseignements personnels. Une fois ce survol tracé, les pratiques de « data brokerage », de « cloud computing » et des solutions « analytics » seront décortiquées. Au cours de cette description, les enjeux juridiques soulevés par chaque aspect de la pratique en question seront étudiés. Enfin, le dernier chapitre de cet essai sera réservé à deux enjeux, soit le rôle du consentement et la sécurité des données, qui ne relèvent pas d’une pratique commerciale spécifique, mais qui sont avant tout des conséquences directes de l’évolution des technologies de l’information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtually every sector of business and industry that uses computing, including financial analysis, search engines, and electronic commerce, incorporate Big Data analysis into their business model. Sophisticated clustering algorithms are popular for deducing the nature of data by assigning labels to unlabeled data. We address two main challenges in Big Data. First, by definition, the volume of Big Data is too large to be loaded into a computer’s memory (this volume changes based on the computer used or available, but there is always a data set that is too large for any computer). Second, in real-time applications, the velocity of new incoming data prevents historical data from being stored and future data from being accessed. Therefore, we propose our Streaming Kernel Fuzzy c-Means (stKFCM) algorithm, which reduces both computational complexity and space complexity significantly. The proposed stKFCM only requires O(n2) memory where n is the (predetermined) size of a data subset (or data chunk) at each time step, which makes this algorithm truly scalable (as n can be chosen based on the available memory). Furthermore, only 2n2 elements of the full N × N (where N >> n) kernel matrix need to be calculated at each time-step, thus reducing both the computation time in producing the kernel elements and also the complexity of the FCM algorithm. Empirical results show that stKFCM, even with relatively very small n, can provide clustering performance as accurately as kernel fuzzy c-means run on the entire data set while achieving a significant speedup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I Big Data stanno guidando una rivoluzione globale. In tutti i settori, pubblici o privati, e le industrie quali Vendita al dettaglio, Sanità, Media e Trasporti, i Big Data stanno influenzando la vita di miliardi di persone. L’impatto dei Big Data è sostanziale, ma così discreto da passare inosservato alla maggior parte delle persone. Le applicazioni di Business Intelligence e Advanced Analytics vogliono studiare e trarre informazioni dai Big Data. Si studia il passaggio dalla prima alla seconda, mettendo in evidenza aspetti simili e differenze.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cet essai est présenté en tant que mémoire de maîtrise dans le cadre du programme de droit des technologies de l’information. Ce mémoire traite de différents modèles d’affaires qui ont pour caractéristique commune de commercialiser les données dans le contexte des technologies de l’information. Les pratiques commerciales observées sont peu connues et l’un des objectifs est d’informer le lecteur quant au fonctionnement de ces pratiques. Dans le but de bien situer les enjeux, cet essai discutera d’abord des concepts théoriques de vie privée et de protection des renseignements personnels. Une fois ce survol tracé, les pratiques de « data brokerage », de « cloud computing » et des solutions « analytics » seront décortiquées. Au cours de cette description, les enjeux juridiques soulevés par chaque aspect de la pratique en question seront étudiés. Enfin, le dernier chapitre de cet essai sera réservé à deux enjeux, soit le rôle du consentement et la sécurité des données, qui ne relèvent pas d’une pratique commerciale spécifique, mais qui sont avant tout des conséquences directes de l’évolution des technologies de l’information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As economies, societies, and environments change, official statistics evolve and develop to reflect those changes. In reaction to disruptive innovations arising from globalisation, technological advances, and cultural changes, the pace of change of official statistics will accelerate in the future. The motivation for change may also be more existential than that of the past as official statisticians consider the survival of their discipline. This article examines some of the emerging developments and questions whether they present threats or offer opportunities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As mechatronic devices and components become increasingly integrated with and within wider systems concepts such as Cyber-Physical Systems and the Internet of Things, designer engineers are faced with new sets of challenges in areas such as privacy. The paper looks at the current, and potential future, of privacy legislation, regulations and standards and considers how these are likely to impact on the way in which mechatronics is perceived and viewed. The emphasis is not therefore on technical issues, though these are brought into consideration where relevant, but on the soft, or human centred, issues associated with achieving user privacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivo: Identificar las barreras para la unificación de una Historia Clínica Electrónica –HCE- en Colombia. Materiales y Métodos: Se realizó un estudio cualitativo. Se realizaron entrevistas semiestructuradas a profesionales y expertos de 22 instituciones del sector salud, de Bogotá y de los departamentos de Cundinamarca, Santander, Antioquia, Caldas, Huila, Valle del Cauca. Resultados: Colombia se encuentra en una estructuración para la implementación de la Historia Clínica Electrónica Unificada -HCEU-. Actualmente, se encuentra en unificación en 42 IPSs públicas en el departamento de Cundinamarca, el desarrollo de la HCEU en el país es privado y de desarrollo propio debido a las necesidades particulares de cada IPS. Conclusiones: Se identificaron barreras humanas, financieras, legales, organizacionales, técnicas y profesionales en los departamentos entrevistados. Se identificó que la unificación de la HCE depende del acuerdo de voluntades entre las IPSs del sector público, privado, EPSs, y el Gobierno Nacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the high standards expected from diagnostic medical imaging, the analysis of information regarding waiting lists via different information systems is of utmost importance. Such analysis, on the one hand, may improve the diagnostic quality and, on the other hand, may lead to the reduction of waiting times, with the concomitant increase of the quality of services and the reduction of the inherent financial costs. Hence, the purpose of this study is to assess the waiting time in the delivery of diagnostic medical imaging services, like computed tomography and magnetic resonance imaging. Thereby, this work is focused on the development of a decision support system to assess waiting times in diagnostic medical imaging with recourse to operational data of selected attributes extracted from distinct information systems. The computational framework is built on top of a Logic Programming Case-base Reasoning approach to Knowledge Representation and Reasoning that caters for the handling of in-complete, unknown, or even self-contradictory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 10th European Conference on Information Systems Management is being held at The University of Evora, Portugal on the 8 /9 September 2016. The Conference Chair is Paulo Silva and the Programme Chairs are Prof. Rui Quaresma and Prof. António Guerreiro. ECISM provides an opportunity for individuals researching and working in the broad field of information systems management, including IT evaluation to come together to exchange ideas and discuss current research in the field. This has developed into a particularly important forum for the present era, where the modern challenges of managing information and evaluating the effectiveness of related technologies are constantly evolving in the world of Big Data and Cloud Computing. We hope that this year’s conference will provide you with plenty of opportunities to share your expertise with colleagues from around the world. The keynote speakers for the Conference are Carlos Zorrinho from the Portuguese Delegation and Isabel Ramos from University of Minho, Portugal. ECISM 2016 received an initial submission of 84 abstracts. After the double blind peer review process 25 aca demic papers, 7 PhD research papers, 3 Masters research paper and 5 work in progress papers have been ac cepted for publication in these Conference Proceedings. These papers represent research from around the world, including Belgium, Brazil, China, Czech Republic, Kazakhstan, Malaysia, New Zealand, Norway, Oman, Poland, Portugal, South Africa, Sweden, The Netherlands, UK and Vietnam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is an overview of some of the implications of IoT on the healthcare field. Due to the increasing of IoT solutions, healthcare cannot be outside of this paradigm. The contribution of this paper is to introduce directions to achieve a global connectivity between the Internet of Things (IoT) and the medical environments. The need to integrate all in a global environment is a huge challenge to all (from electrical engineers to data engineers).This revolution is redesigning the way we see healthcare, from the smallest sensor to the big data collected.