927 resultados para gauge theories
Resumo:
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.
Resumo:
It is shown that the action functional S[g, phi] = integral d4 x square-root -g[R/k(1 + klambdaphi2) + partial derivative(mu)phi partial derivative(mu)phi] describes, in general, one and the same classical theory whatever may be the value of the coupling constant lambda.
Resumo:
A systematic construction of super W algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy momentum tensor, is discussed in general terms for all super Lie algebras whose simple roots are fermionic. A detailed discussion employing the Dirac bracket structure and an explicit construction of W algebras for the cases of OSP(1, 2), OSP(2, 2), OSP(3, 2) and D(2, 1\ alpha) are given. The N = 1 and N = 2 superconformal algebras are discussed in the pertinent cases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The conventional S-matrix approach to the (tree level) open string low energy effective lagrangian assumes that, in order to obtain all its bosonic alpha'(N) order terms, it is necessary to know the open string (tree level) (N + 2)-point amplitude of massless bosons, at least expanded at that order in alpha'. In this work we clarify that the previous claim is indeed valid for the bosonic open string, but for the supersymmetric one the situation is much more better than that: there are constraints in the kinematical bosonic terms of the amplitude (probably due to Spacetime Supersymmetry) such that a much lower open superstring n-point amplitude is needed to find all the alpha'(N) order terms. In this 'revisited' S-matrix approach we have checked that, at least up to alpha'(4) order, using these kinematical constraints and only the known open superstring 4-point amplitude, it is possible to determine all the bosonic terms of the low energy effective lagrangian. The sort of results that we obtain seem to agree completely with the ones achieved by the method of BPS configurations, proposed about ten years ago. By means of the KLT relations, our results can be mapped to the NS-NS sector of the low energy effective lagrangian of the type II string theories implying that there one can also find kinematical constraints in the N -point amplitudes and that important informations can be inferred, at least up to alpha'(4) order, by only using the (tree level) 4-point amplitude.
Resumo:
Using the coadjoint orbit method we derive a geometric WZWN action based on the extended two-loop Kac-Moody algebra. We show that under a hamiltonian reduction procedure, which respects conformal invariance, we obtain a hierarchy of Toda type field theories, which contain as submodels the Toda molecule and periodic Toda lattice theories. We also discuss the classical r-matrix and integrability properties.
Resumo:
In this note we show that the induced 2D-gravity SL(2, ℝ) currents can be defined in a gauge-independent way although they manifest themselves as generators of residual symmetries only in some special gauges. In the Coulomb gas representation we investigate two approaches, namely one resembling string field theory and another that emphasizes the SL(2, ℝ) structure in the phase space. In the conformal gauge we propose a solution of the Liouville theory in terms of the SL(2, ℝ) currents.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
We review two-dimensional QCD. We start with the field theory aspects since 't Hooft's 1/N expansion, arriving at the non-Abelian bosonization formula, coset construction and gauge-fixing procedure. Then we consider the string interpretation, phase structure and the collective coordinate approach. Adjoint matter is coupled to the theory, and the Landau-Ginzburg generalization is analysed. We end with considerations concerning higher algebras, integrability, constraint structure, and the relation of high-energy scattering of hadrons with two-dimensional (integrable) field theories.
Resumo:
We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.
Resumo:
In analogy with the Liouville case we study the sl3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra.
Resumo:
We study in a model independent way the role of a techniomega resonance in the process e+e-→ W+W-Z at the Next Linear Collider. © 1998 Elsevier Science B.V.
Resumo:
In the context of the standard model the quantization of the electric charge occurs only family by family. When we consider the three families together with massless neutrinos the electric charge is not quantized any more. Here we show that a chiral bilepton gauge model based on the gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)N explains the quantization of the electric charge when we take into account the three families of fermions. This result does not depend on the neutrino masses. Charge quantization occurs whether the neutrinos are massless or Dirac or Majorana massive fields.
Resumo:
We derive bounds on Higgs and gauge-boson anomalous interactions using the LEP2 data on the production of three photons and photon pairs in association with hadrons. In the framework of SU(2)L ⊗ U(1)Y effective Lagrangians, we examine all dimension-six operators that lead to anomalous Higgs interactions involving γ and Z. The search for Higgs boson decaying to γγ pairs allow us to obtain constrains on these anomalous couplings that are comparable with the ones originating from the analysis of pp̄ collisions at the Tevatron. Our results also show that if the coefficients of all blind operators are assumed to have the same magnitude, the indirect constraints on the anomalous couplings obtained from this analysis, for Higgs masses MH ≲ 140 GeV, are more restrictive than the ones coming from the W+W- production. © 1998 Elsevier Science B.V. All rights reserved.