978 resultados para gas turbine blade
Resumo:
The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.
Resumo:
© 2014 by ASME. This paper, the second of two parts, presents a new setup for the two-stage two-spool facility located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The rig was designed to reproduce the flow behavior of a transonic turbine followed by a counter-rotating low pressure stage such as those in high bypass aero-engines. The meridional flow path of the machine is characterized by a diffusing S-shaped duct between the two rotors. The role of wide chord vanes placed into the mid turbine frame is to lead the flow towards the low pressure (LP) rotor with appropriate swirl. Experimental and numerical investigations performed on this setup showed that the wide chord struts induce large wakes and extended secondary flows at the LP inlet flow. Moreover, large deterministic fluctuations of pressure, which may cause noise and blade vibrations, were observed downstream of the LP rotor. In order to minimize secondary vortices and to damp the unsteady interactions, the mid turbine frame was redesigned to locate two zero-lift splitters into each vane passage. While in the first part of the paper the design process of the splitters and the time-averaged flow field were presented, in this second part the measurements performed by means of a fast response probe will support the explanation of the time-resolved field. The discussion will focus on the comparison between the baseline case (without splitters) and the embedded design.
Resumo:
The tilt-casting method is used to achieve tranquil filling of gamma-TiAl turbine blades. The reactive alloy is melted in a cold crucible using an induction coil and then the complete crucible-mould- running system assembly is rotated through 180degrees to transfer the metal into the mould. The induction current is ramped down gradually as the rotation starts and the mould is preheated to maintain superheat. The liquid metal then enters the mould and the gas within it (argon) escapes through the inlet aperture and through auxiliary vents. Solidification starts as soon the metal enters the mould and it is important to account for this effect to predict and prevent misruns. The rotation rate has to be controlled carefully to allow sufficient time for gas evacuation, but at the same time preserve superheat. This 3-phase system is modelled using the FV method, with a fast implicit numerical scheme used to capture the transient liquid free surface. The enthalpy method is used to model solidification and predict defects such as trapped bubbles, macro-porosity or surface connected porosity. Modeling is used to support an experimental program for the development of a production method for gamma-TiAl blades, with a target length of 40cm. The experiments provide validation for the model and the model in turn optimizes the tilt-casting process. The work is part of the EU project IMPRESS.
Resumo:
An extensive experimental program has been carried out on a 135?mm tip diameter radial turbine using a variety of stator designs, in order to facilitate direct performance comparisons of varying stator vane solidity and the effect of varying the vaneless space. A baseline vaned stator was designed using commercial blade design software, having 15 vanes and a vane trailing edge to rotor leading edge radius ratio (Rte/rle) of 1.13. Two additional series of stator vanes were designed and manufactured; one series having varying vane numbers of 12, 18, 24, and 30, and a further series with Rte/rle ratios of 1.05, 1.175, 1.20, and 1.25. As part of the design process a series of CFD simulations were carried out in order to guide design iterations towards achieving a matched flow capacity for each stator. In this way the variations in the measured stage efficiency could be attributed to the stator passages only, thus allowing direct comparisons to be made. Interstage measurements were taken to capture the static pressure distribution at the rotor inlet and these measurements were then used to validate subsequent numerical models. The overall losses for different stators have been quantified and the variations in the measured and computed efficiency were used to recommend optimum values of vane solidity and Rte/rle.
Resumo:
Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.
Resumo:
Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle – the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters.
Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model.
Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle.
The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.
Resumo:
Off-design performance now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. In this region of operation the U/C value will be low and the rotor will experience high values of positive incidence at the inlet. The positive incidence causes flow to separate on the suction surface and produces high blade loading at inlet, which drives tip leakage. A CFD analysis has been carried out on a number of automotive turbines utilizing non-radial fibred blading. To help improve secondary flows yet meet stress requirements a number of designs have been investigated. The inlet blade angle has been modified in a number of ways. Firstly, the blading has been adjusted as to provide a constant back swept angle in the span wise direction. Using the results of the constant back swept blading studies, the back swept blade angle was then varied in the span wise direction. In addition to this, in an attempt to avoid an increase in stress, the effect of varying the leading edge profile of the blade was investigated. It has been seen that off-design performance is improved by implementing back swept blading at the inlet. Varying the inlet angle in the span wise direction provided more freedom for meeting stress requirements and reduces the negative impact on blade performance at the design point. The blade leading edge profile was seen to offer small improvements during off-design operation with minimal effects on stress within the rotor. However, due to the more pointed nature of the leading edge, the rotor was less tolerant to flow misalignment at the design point.
Resumo:
Conventionally, radial turbines have almost exclusively used radially fibred blades. While issues of mechanical integrity are paramount, there may be opportunities for improving turbine efficiency through a 3D blade design without exceeding mechanical limits. Off-design performance and understanding of the secondary flow structures now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. Operating in this region means the rotor will experience high values of positive incidence at the inlet. A CFD analysis has been carried out on a scaled automotive turbine utilizing a swing vane stator system. To date no open literature exists on the flow structures present in a standard VGT system. Investigations were carried out on a 90 mm diameter rotor with the stator vane at the maximum, minimum and 25% mass flow rate positions. In addition stator vane endwall clearance existed at the hub side. From investigation of the internal flow fields of the baseline rotor, a number of areas that could be optimized in the future with three dimensional blading were identified. The blade loading and tip leakage flow near inlet play a significant role in the flow development further downstream at all stator vane positions. It was found that tip leakage flow and flow separation at off-design conditions could be reduced by employing back swept blading and redistributing the blade loading. This could potentially reduce the extent of the secondary flow structures found in the present study.
Resumo:
In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concerning referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. However, since then, the defied solutions have pointed to aerodynamic disadvantages or have seemed nonappropriate in these conditions. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good adaptation to temperatures higher than 400°C, particularly exposed to temperatures of gas exhaust from tunnels in fire situation. Furthermore, it presents a very good resistance to corrosion and posterior welding and pressing, due to its alloyed elements. The innovation is centered in the process of a deep drawing of metallic shells and posterior welding, in order to keep the ideal aerodynamic superficies for the fan ideal performance. On the other hand, the finite element method, through the elasto-plastic software COSMOS permitted the verification of the thickness and structural stability of the blade in relation to the aerodynamic efforts established in the project. In addition, it is not advisable the fabrication of blades with variable localized thickness not even, non-uniform ones, due to the verified concentration of tensions and the difficulties observed in the forming. In this way, this study recommends the construction of blades with uniform variations of thickness. © 2007 Springer.
Resumo:
In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24°C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at -5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM(Blade ElementMomentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this thesis we have successfully developed a powerful computational tool for the aeroelastic analysis of wind-turbine blades. Due to the particular features mentioned above in terms of a full representation of the combined modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads, it constitutes a substantial advancement ahead the state-of-the-art aeroelastic models currently available, like the FAST-Aerodyn suite. In this thesis, we also include the results of several experiments on the NREL-5MW blade, which is widely accepted today as a benchmark blade, together with some modifications intended to explore the capacities of the new code in terms of capturing features on blade-dynamic behavior, which are normally overlooked by the existing aeroelastic models.
Resumo:
An experimental and numerical study of ballistic impacts on steel plates at various temperatures (700ºC, 400ºC and room temperature) has been carried out. The motivation for this work is the blade‐off event that may occur inside a jet engine turbine. However, as a first attempt to understand this complex loading process, a somewhat simpler approach is carried out in the present work. The material used in this study is the FV535 martensitic stainless steel, which is one of the most commonly used materials for turbine casings. Based on material test data, a Modified Johnson‐Cook (MJC) model was calibrated for numerical simulations using the LS‐DYNA explicit finite element code (see Figure 1). To check the mesh size sensitivity, 2D axisymmetric finite element models with three different mesh sizes and configurations were used for the various temperatures. Two fixed meshes with 64 and 128 elements over the 2mm thick plate and one mesh with 32 elements over the thickness with adaptive remeshing were used in the simulations. The formation of adiabatic shear bands in the perforation process has been found critical in order to achieve good results. Adiabatic shear bands are formed by the temperature rise due to the accumulation of plastic strain during impact (see Figure 2). The influence of the thermal softening in the plastic model has hence been analyzed for the room temperature impact tests, where the temperature gradient is highest