997 resultados para gamma spectroscopy
Resumo:
Near infrared spectroscopy (NIRS) can play a vital role as a cost effective, rapid, non-invasive, reproducible diagnostic tool for many environmental management, agricultural and industrial waste water monitoring applications. In this paper we highlight the ability of NIRS technology to be used as a diagnostic tool in agricultural and environmental applications through the successful assessment of Fourier Transform NIRS to predict α santalol in sandalwood chip samples, and maturity of ‘Hass’ avocado fruit based on dry matter content. Presented at the Third International Conference on Challenges in Environmental Science & Engineering, CESE-2010. 26 September – 1 October 2010, The Sebel, Cairns, Queensland, Australia.
Resumo:
Management of insecticide resistance.
Resumo:
X-ray photoelectron and Auger spectroscopic techniques have been employed to study surface segregation and oxidation of Cu-1 at%Sn, Cu-9at%Pd and Cu-25at%Pd alloys. Both Cu-Pd(9%) and Cu-Pd(25%) alloys show segregation of Cu when heated above 500 K. The Pd concentration was reduced by 50% at 750 K compared to the bulk composition; the enthalpy of segregation of Cu is around - 6kJ/mol. Sn segregation is seen from 470 to 650 K in the Cu-Sn(1%) alloy, and a saturation plateau of Sn concentration above 650 K is observed. Surface oxidation of Cu-Sn(1%) and Cu-Pd(9%) alloys at 500 K showed the formation of Cu2O on the surface with total suppression of Sn or Pd on the respective alloy surfaces. On vacuum annealing the oxidised Cu-Sn alloy surface at 550 K, a displacement reaction 2Cu2O+Sn→4Cu+SnO2 was observed. However, under similar annealing of the oxidised Cu-Pd(9%) alloy surface at 500 K, oxide oxygen was totally desorbed leaving the Cu-Pd alloy surface clean. In the case of the Cu-Pd(25%) alloy, only dissociatively chemisorbed oxygen was seen at 500 K which desorbed at the same temperature. Oxygen spill-over from copper to palladium is suggested as the mechanism of oxygen desorption from the oxidised Cu-Pd alloy surfaces.
Resumo:
Serum gamma-glutamyl transferase (GGT) activity is a marker of liver disease which is also prospectively associated with the risk of all-cause mortality, cardiovascular disease, type 2 diabetes and cancers. We have discovered novel loci affecting GGT in a genome-wide association study (rs1497406 in an intergenic region of chromosome 1, P = 3.9 x 10(-8); rs944002 in C14orf73 on chromosome 14, P = 4.7 x 10(-13); rs340005 in RORA on chromosome 15, P = 2.4 x 10(-8)), and a highly significant heterogeneity between adult and adolescent results at the GGT1 locus on chromosome 22 (maximum P(HET) = 5.6 x 10(-12) at rs6519520). Pathway analysis of significant and suggestive single-nucleotide polymorphism associations showed significant overlap between genes affecting GGT and those affecting common metabolic and inflammatory diseases, and identified the hepatic nuclear factor (HNF) family as controllers of a network of genes affecting GGT. Our results reinforce the disease associations of GGT and demonstrate that control by the GGT1 locus varies with age.
Resumo:
The rates of alkaline hydrolysis of methyl &benzoylpropionate (I), methyl y-benzoylbutyrate (11) and methyll6-benzoylvalerate (In) decrease in the order I > I1 > III. Keto participation is the predominant pathway in the case of y-keto esters. Evidence has also been obtained for keto participation in the case of 6-keto esters, whereas no such evidence is available in the case of r-keto esters studied.
Resumo:
Acidity in terms of pH and titratable acids influences the texture and flavour of fermented dairy products, such as Kefir. However, the methods for determining pH and titratable acidity (TA) are time consuming. Near infrared (NIR) spectroscopy is a non-destructive method, which simultaneously predicts multiple traits from a single scan and can be used to predict pH and TA. The best pH NIR calibration model was obtained with no spectral pre-treatment applied, whereas smoothing was found to be the best pre-treatment to develop the TA calibration model. Using cross-validation, the prediction results were found acceptable for both pH and TA. With external validation, similar results were found for pH and TA, and both models were found to be acceptable for screening purposes.
Resumo:
The rapid data acquisition, natural fluorescence rejection and experimental ease are the advantages of the ultra-fast Raman loss scattering (URLS) which makes it a unique and valuable molecular structure-determining technique. URLS is an analogue of stimulated Raman scattering (SRS) but far more sensitive than SRS. It involves the interaction of two laser sources, viz. a picosecond (ps) pulse and white light, with the sample leading to the generation of loss signal on the higher energy (blue) side with respect to the wavelength of the ps pulse, unlike the gain signal observed on the red side in SRS. These loss signals are at least 1.5 times more intense than the SRS signals. Also, the very prerequisite of the experimental protocol for signal detection to be on the higher energy side by design eliminates the interference from fluorescence, which always appears on the red side. Unlike coherent anti-Stokes Raman scattering, URLS signals are not precluded by non-resonant background under resonance condition and also being a self-phase matched process, it is experimentally easier.
Resumo:
Bread undergoes several physicochemical changes during storage that results in a rapid loss of freshness. These changes depend on moisture content present in bread product. An instrument based on electrical impedance spectroscopy technique is developed to estimate moisture content of bread at different zones using designed multi-channel ring electrodes. A dedicated AT89S52 microcontroller and associated peripherals are employed for hardware. A constant current is applied across bread loaf through central pair of electrodes and developed potential across different zones of bread loaf are measured using remaining four ring electrode pairs. These measured values of voltage and current are used to measure the impedance at each zone. Electrical impedance behavior of the bread loaf at crust and crumb is investigated during storage. A linear relationship is observed between the measured impedance and moisture content present in crust and crumb of bread loaf during storage of 120 hours.
Resumo:
The quasi-aromatic property of metal chelates of thio-beta-diketones has been studied by reacting them with phenylisocyanate, where addition takes place at the gamma-CH in a stepwise manner. Mono-thiodiketonates of Ni(II), Pd(II), cu(II) and Co(III) and the dithio-acetylacetonate of Ni(II) react with phenylisocyanate to produce mono-, di- and triphenylamido [with cobalt (III) only] substituted derivatives. In the case of tris (ethylthioacetoacetato) cobalt (III), it is found that the reaction with phenylisocyanate gives two isomers, a chocolate coloured isomer in which the phenylamido carbonyl is not coordinated while the green coloured isomer has bonding through phenylemido carbonyl oxygen. The reactions of the thiodiketonates have been compared with those of beta-diketonates and beta-ketoiminates. The reaction products have been characterised by elemental analyses, magnetic moments, and electronic, IR and 1H NMR spectral studies.
Resumo:
Understanding the polymerization mechanism of a precursor is indispensable to enhance the requisite material properties. In situ mass spectroscopy and X-ray photoelectron spectroscopy is used in this study to understand the RF plasma polymerization of γ-terpinene. High-resolution mass spectra positive ion mass spectrometry data of the plasma phase demonstrates the presence of oligomeric species of the type [M+H]+ and [2M+H]+, where M represents a unit of the starting material. In addition, there is abundant fragmented species, with most dominant being [M+] (136 m/z), C10H13+ (133 m/z), C9H11+ (119 m/z), and C7H9+ (93 m/z). The results reported in this manuscript enables to comprehend the relationship between the degree of incorporation of oxygen and the rate of deposition with the input RF power.
Resumo:
Quality and safety evaluation of agricultural products has become an increasingly important consideration in market/commercial viability and systems for such evaluations are now demanded by customers, including distributors and retailers. Unfortunately, most horticultural products struggle with delivering adequate and consistent quality to the consumer. Removing inconsistencies and providing what the consumer expects is a key factor for retaining and expanding both domestic and international markets. Most commercial quality classification systems for fruit and vegetables are based on external features of the product, for example: shape, colour, size, weight and blemishes. However, the external appearance of most fruit is generally not an accurate guide to the internal or eating quality of the fruit. Internal quality of fruit is currently subjectively judged on attributes such as volatiles, firmness, and appearance. Destructive subjective measures such as internal flesh colour, or objective measures such as extraction of juice to measure sweetness (oBrix) or assessment of dry matter (DM) content are also used, although obviously not for every fruit – just a sample to represent the whole consignment. For avocado fruit, external colour is not a maturity characteristic, and its smell is too weak and appears later in its maturity stage (Gaete-Garreton et al., 2005). Since maturity is a major component of avocado quality and palatability, it is important to harvest mature fruit, so as to ensure that fruit will ripen properly and have acceptable eating quality. Currently, commercial avocado maturity estimation is based on destructive assessment of the %DM, and sometimes percent oil, both of which are highly correlated with maturity (Clark et al., 2003; Mizrach & Flitsanov, 1999). Avocados Australia Limited (AAL (2008)) recommend a minimum maturity standard for its growers of 23 %DM (greater than 10% oil content) for the ‘Hass’ cultivar, although consumer studies indicate a preference for at least 25 %DM (Harker et al., 2007).
Resumo:
L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{45}$, L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ and L$_{23}$ M$_{23}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ Auger intensity ratios in transition metal oxides and sulphides are shown to be directly related to the number of valence electrons in the metal as well as to its oxidation state. The metal Auger intensity ratios provide a unique probe, independent of O (KLL) intensity, to study surface oxidation states of metals. These intensity ratios have been effectively employed to investigate surface oxidation of nickel, iron and copper. The oxidation studies have unravelled some interesting aspects of surface oxidation.