699 resultados para fuzzy set QCA
Resumo:
Propuesta de reconocimiento del estándar de comodidad en clientes con pénfigo vulgar utilizando la Lógica FuzzyO objetivo é propor a Lógica Fuzzy para reconhecimento de padrões de conforto de pessoas submetidas a uma tecnologia de cuidar em Enfermagem por apresentarem pênfigo vulgar, uma doença cutâneo-mucosa rara que acomete principalmente adultos. A proposta aplicável em métodos experimentais com sujeitos submetidos à comparação quali-quantitativa (taxonomia/pertinência) do padrão de conforto antes e depois da intervenção. Requer o registro em escala cromática correspondente à intensidade de cada atributo: dor; mobilidade e comprometimento da autoimagem. As regras Fuzzy estabelecidas pela máquina de inferência definem o padrão de conforto em desconforto máximo, mediano e mínimo, traduzindo a eficácia dos cuidados de Enfermagem. Apesar de pouco utilizada na área de Enfermagem, essa lógica viabiliza pesquisas sem dimensionamento a priori do número de sujeitos em função da estimação de parâmetros populacionais. Espera-se avaliação do padrão de conforto do cliente com pênfigo diante da tecnologia aplicada de forma personalizada, conduzindo a avaliação global.
Resumo:
Allele frequencies and forensically relevant population statistics of 16 STR loci, including the new European Standard Set (ESS) loci, were estimated from 668 unrelated individuals of Caucasian appearance living in different parts of Switzerland. The samples were amplified with a combination of the following three kits: AmpFlSTR® NGM SElect?, PowerPlex® ESI17 and PowerPlex® ESX 17. All loci were highly polymorphic and no significant departure from Hardy-Weinberg equilibrium and linkage equilibrium was detected after correction for sampling.
Resumo:
We start with a generalization of the well-known three-door problem:the n-door problem. The solution of this new problem leads us toa beautiful representation system for real numbers in (0,1] as alternated series, known in the literature as Pierce expansions. A closer look to Pierce expansions will take us to some metrical properties of sets defined through the Pierce expansions of its elements. Finally, these metrical properties will enable us to present 'strange' sets, similar to the classical Cantor set.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing from an offerset, have recently become popular in assortment optimization and revenue management. The dynamicprogram for these models is intractable and approximated by a deterministic linear program called theCDLP which has an exponential number of columns. When there are products that are being consideredfor purchase by more than one customer segment, CDLP is difficult to solve since column generationis known to be NP-hard. However, recent research indicates that a formulation based on segments withcuts imposing consistency (SDCP+) is tractable and approximates the CDLP value very closely. In thispaper we investigate the structure of the consideration sets that make the two formulations exactly equal.We show that if the segment consideration sets follow a tree structure, CDLP = SDCP+. We give acounterexample to show that cycles can induce a gap between the CDLP and the SDCP+ relaxation.We derive two classes of valid inequalities called flow and synchronization inequalities to further improve(SDCP+), based on cycles in the consideration set structure. We give a numeric study showing theperformance of these cycle-based cuts.
Resumo:
Canonical correspondence analysis and redundancy analysis are two methods of constrained ordination regularly used in the analysis of ecological data when several response variables (for example, species abundances) are related linearly to several explanatory variables (for example, environmental variables, spatial positions of samples). In this report I demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear relationships can be diagnosed; second, more variance in the responses can be explained; and third, in the presence of categorical explanatory variables (for example, years, regions) the interpretation of the resulting triplot ordination is unified because all explanatory variables are measured at a categorical level.
Resumo:
In todays competitive markets, the importance of goodscheduling strategies in manufacturing companies lead to theneed of developing efficient methods to solve complexscheduling problems.In this paper, we studied two production scheduling problemswith sequence-dependent setups times. The setup times areone of the most common complications in scheduling problems,and are usually associated with cleaning operations andchanging tools and shapes in machines.The first problem considered is a single-machine schedulingwith release dates, sequence-dependent setup times anddelivery times. The performance measure is the maximumlateness.The second problem is a job-shop scheduling problem withsequence-dependent setup times where the objective is tominimize the makespan.We present several priority dispatching rules for bothproblems, followed by a study of their performance. Finally,conclusions and directions of future research are presented.
Resumo:
We evaluate conditional predictive densities for U.S. output growth and inflationusing a number of commonly used forecasting models that rely on a large number ofmacroeconomic predictors. More specifically, we evaluate how well conditional predictive densities based on the commonly used normality assumption fit actual realizationsout-of-sample. Our focus on predictive densities acknowledges the possibility that, although some predictors can improve or deteriorate point forecasts, they might have theopposite effect on higher moments. We find that normality is rejected for most modelsin some dimension according to at least one of the tests we use. Interestingly, however,combinations of predictive densities appear to be correctly approximated by a normaldensity: the simple, equal average when predicting output growth and Bayesian modelaverage when predicting inflation.
Resumo:
This paper aims to estimate a translog stochastic frontier production function in the analysis of a panel of 150 mixed Catalan farms in the period 1989-1993, in order to attempt to measure and explain variation in technical inefficiency scores with a one-stage approach. The model uses gross value added as the output aggregate measure. Total employment, fixed capital, current assets, specific costs and overhead costs are introduced into the model as inputs. Stochasticfrontier estimates are compared with those obtained using a linear programming method using a two-stage approach. The specification of the translog stochastic frontier model appears as an appropriate representation of the data, technical change was rejected and the technical inefficiency effects were statistically significant. The mean technical efficiency in the period analyzed was estimated to be 64.0%. Farm inefficiency levels were found significantly at 5%level and positively correlated with the number of economic size units.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) isolates from 20 chronically infected patients who participated in a structured treatment interruption (STI) trial were studied to determine whether viral fitness influences reestablishment of viremia. Viruses derived from individuals who spontaneously controlled viremia had significantly lower in vitro replication capacities than viruses derived from individuals that did not control viremia after interruption of antiretroviral therapy (ART), and replication capacities correlated with pre-ART and post-STI viral set points. Of note, no clinically relevant improvement of viral loads upon STI occurred. Virus isolates from controlling and noncontrolling patients were indistinguishable in terms of coreceptor usage, genetic subtype, and sensitivity to neutralizing antibodies. In contrast, viruses from controlling patients exhibited increased sensitivity to inhibition by chemokines. Sensitivity to inhibition by RANTES correlated strongly with slower replication kinetics of the virus isolates, suggesting a marked dependency of these virus isolates on high coreceptor densities on the target cells. In summary, our data indicate that viral fitness is a driving factor in determining the magnitude of viral rebound and viral set point in chronic HIV-1 infection, and thus fitness should be considered as a parameter influencing the outcome of therapeutic intervention in chronic infection.
Resumo:
The set covering problem is an NP-hard combinatorial optimization problemthat arises in applications ranging from crew scheduling in airlines todriver scheduling in public mass transport. In this paper we analyze searchspace characteristics of a widely used set of benchmark instances throughan analysis of the fitness-distance correlation. This analysis shows thatthere exist several classes of set covering instances that have a largelydifferent behavior. For instances with high fitness distance correlation,we propose new ways of generating core problems and analyze the performanceof algorithms exploiting these core problems.