916 resultados para forage maize
Resumo:
Generation means was used to study the mode of inheritance of resistance to anthracnose stalk rot in tropical maize. Each population was comprised of six generations in two trials under a randomized block design. Inoculations were performed using a suspension of 105 conidia mL(-1) applied into the stalk. Internal lesion length was directly measured by opening the stalk thirty days after inoculation. Results indicated contrasting modes of inheritance. In one population, dominant gene effects predominated. Besides, additive x dominant and additive x additive interactions were also found. Intermediate values of heritability indicated a complex resistance inheritance probably conditioned by several genes of small effects. An additive-dominant genetic model sufficed to explain the variation in the second population, where additive gene effects predominated. Few genes of major effects control disease resistance in this cross. Heterosis widely differed between populations, which can be attributed to the genetic background of the parental resistant lines.
Resumo:
Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment.
Resumo:
Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).
Resumo:
Dry matter yield and chemical composition of forage grasses harvested from an area degraded by urban solid waste deposits were evaluated. A split-plot scheme in a randomized block design with four replicates was used, with five grasses in the plots and three harvests in the subplots. The mineral content and extraction and heavy metal concentration were evaluated in the second cut, using a randomized block design with five grasses and four replicates. The grasses were Brachiaria decumbens cv. Basilisk, Brachiaria ruziziensis, Brachiaria brizantha cv. Marandu and cv. Xaraés, and Panicum maximum cv. Tanzânia, cut at 42 days of regrowth. The dry matter yield per cut reached 1,480 kg ha-1; the minimum crude protein content was 9.5% and the average neutral detergent fiber content was 62.3%. The dry matter yield of grasses was satisfactory, and may be an alternative for rehabilitating areas degraded by solid waste deposits. The concentration of heavy metals in the plants was below toxicity levels; the chemical composition was appropriate, except for phosphorus. The rehabilitated areas may therefore be used for grazing.
Resumo:
Improvements in on-farm water and soil fertility management through water harvesting may prove key to up-grade smallholder farming systems in dry sub-humid and semi-arid sub-Sahara Africa (SSA). The currently experienced yield levels are usually less than 1 t ha-1, i.e., 3-5 times lower than potential levels obtained by commercial farmers and researchers for similar agro-hydrological conditions. The low yield levels are ascribed to the poor crop water availability due to variable rainfall, losses in on-farm water balance and inherently low soil nutrient levels. To meet an increased food demand with less use of water and land in the region, requires farming systems that provide more yields per water unit and/or land area in the future. This thesis presents the results of a project on water harvesting system aiming to upgrade currently practised water management for maize (Zea mays, L.) in semi-arid SSA. The objectives were to a) quantify dry spell occurrence and potential impact in currently practised small-holder grain production systems, b) test agro-hydrological viability and compare maize yields in an on-farm experiment using combinations supplemental irrigation (SI) and fertilizers for maize, and c) estimate long-term changes in water balance and grain yields of a system with SI compared to farmers currently practised in-situ water harvesting. Water balance changes and crop growth were simulated in a 20-year perspective with models MAIZE1&2. Dry spell analyses showed that potentially yield-limiting dry spells occur at least 75% of seasons for 2 locations in semi-arid East Africa during a 20-year period. Dry spell occurrence was more frequent for crop cultivated on soil with low water-holding capacity than on high water-holding capacity. The analysis indicated large on-farm water losses as deep percolation and run-off during seasons despite seasonal crop water deficits. An on-farm experiment was set up during 1998-2001 in Machakos district, semi-arid Kenya. Surface run-off was collected and stored in a 300m3 earth dam. Gravity-fed supplemental irrigation was carried out to a maize field downstream of the dam. Combinations of no irrigation (NI), SI and 3 levels of N fertilizers (0, 30, 80 kg N ha-1) were applied. Over 5 seasons with rainfall ranging from 200 to 550 mm, the crop with SI and low nitrogen fertilizer gave 40% higher yields (**) than the farmers’ conventional in-situ water harvesting system. Adding only SI or only low nitrogen did not result in significantly different yields. Accounting for actual ability of a storage system and SI to mitigate dry spells, it was estimated that a farmer would make economic returns (after deduction of household consumption) between year 2-7 after investment in dam construction depending on dam sealant and labour cost used. Simulating maize growth and site water balance in a system of maize with SI increased annual grain yield with 35 % as a result of timely applications of SI. Field water balance changes in actual evapotranspiration (ETa) and deep percolation were insignificant with SI, although the absolute amount of ETa increased with 30 mm y-1 for crop with SI compared to NI. The dam water balance showed 30% productive outtake as SI of harvested water. Large losses due to seepage and spill-flow occurred from the dam. Water productivity (WP, of ETa) for maize with SI was on average 1 796 m3 per ton grain, and for maize without SI 2 254 m3 per ton grain, i.e, a decerase of WP with 25%. The water harvesting system for supplemental irrigation of maize was shown to be both biophysically and economically viable. However, adoption by farmers will depend on other factors, including investment capacity, know-how and legislative possibilities. Viability of increased water harvesting implementation in a catchment scale needs to be assessed so that other down-stream uses of water remains uncompromised.
Resumo:
In a previous study on maize (Zea mays, L.) several quantitative trait loci (QTL) showing high dominance-additive ratio for agronomic traits were identified in a population of recombinant inbred lines derived from B73 × H99. For four of these mapped QTL, namely 3.05, 4.10, 7.03 and 10.03 according to their chromosome and bin position, families of near-isogenic lines (NILs) were developed, i.e., couples of homozygous lines nearly identical except for the QTL region that is homozygote either for the allele provided by B73 or by H99. For two of these QTL (3.05 and 4.10) the NILs families were produced in two different genetic backgrounds. The present research was conducted in order to: (i) characterize these QTL by estimating additive and dominance effects; (ii) investigate if these effects can be affected by genetic background, inbreeding level and environmental growing conditions (low vs. high plant density). The six NILs’ families were tested across three years and in three Experiments at different inbreeding levels as NILs per se and their reciprocal crosses (Experiment 1), NILs crossed to related inbreds B73 and H99 (Experiment 2) and NILs crossed to four unrelated inbreds (Experiment 3). Experiment 2 was conducted at two plant densities (4.5 and 9.0 plants m-2). Results of Experiments 1 and 2 confirmed previous findings as to QTL effects, with dominance-additive ratio superior to 1 for several traits, especially for grain yield per plant and its component traits; as a tendency, dominance effects were more pronounced in Experiment 1. The QTL effects were also confirmed in Experiment 3. The interactions involving QTL effects, families and plant density were generally negligible, suggesting a certain stability of the QTL. Results emphasize the importance of dominance effects for these QTL, suggesting that they might deserve further studies, using NILs’ families and their crosses as base materials.
Resumo:
Root-yield-1.06 is a major QTL affecting root system architecture (RSA) and other agronomic traits in maize. The effect of this QTL has been evaluated with the development of near isogenic lines (NILs) differing at the QTL position. The objective of this study was to fine map qroot-yield-1.06 by marker-assisted searching for chromosome recombinants in the QTL interval and concurrent root phenotyping in both controlled and field conditions, through successive generations. Complementary approaches such as QTL meta-analysis and RNA-seq were deployed in order to help prioritizing candidate genes within the QTL target region. Using a selected group of genotypes, field based root analysis by ‘shovelomics’ enabled to accurately collect RSA information of adult maize plants. Shovelomics combined with software-assisted root imaging analysis proved to be an informative and relatively highly automated phenotyping protocol. A QTL interval mapping was conducted using a segregating population at the seedling stage grown in controlled environment. Results enabled to narrow down the QTL interval and to identify new polymorphic markers for MAS in field experiments. A collection of homozygous recombinant NILs was developed by screening segregating populations with markers flanking qroot-yield-1.06. A first set of lines from this collection was phenotyped based on the adapted shovelomics protocol. QTL analysis based on these data highlighted an interval of 1.3 Mb as completely linked with the target QTL but, a larger safer interval of 4.1 Mb was selected for further investigations. QTL meta-analysis allows to synthetize information on root QTLs and two mQTLs were identified in the qroot-yield-1.06 interval. Trascriptomics analysis based on RNA-seq data of the two contrasting QTL-NILs, confirmed alternative haplotypes at chromosome bin 1.06. qroot-yield-1.06 has now been delimited to a 4.1-Mb interval, and thanks to the availability of additional untested homozygous recombinant NILs, the potentially achievable mapping resolution at qroot-yield-1.06 is c. 50 kb.
Resumo:
Rumen-cannulated cows (n = 4) were fed successively silage made from either conventional or genetically modified (GM) maize. Results revealed no effects of GM maize on the dynamics of six ruminal bacterial strains (investigated by real-time PCR) compared to the conventional maize silage.