957 resultados para fluorescent compatibility
Resumo:
L’espressione di geni eterologhi in Escherichia coli rappresenta uno dei metodi più veloci, semplici ed economici per la produzione di ampie quantità di proteine target. Tuttavia, meccanismi di folding e le modifiche post traduzionali inducono a volte un non corretto ripiegamento delle proteine nella conformazione nativa, con successiva aggregazione in quelli che vengono definiti corpi di inclusione. Nel nostro caso, l’attenzione è stata focalizzata su una Green Fluorescent Protein (GFP) di 228 aa estratta da Anemonia sulcata, contenente un fluoroforo composto da tre amminoacidi Gln63, Tyr64, Gly65 all'interno di una struttura a barile. Il corretto folding della proteina era correlato strettamente alla funzionalità del fluoroforo. Il nostro obiettivo è stato quello, quindi, di ottimizzare il processo di biosintesi della GFP espressa in E. coli, ovviando alla formazione di corpi di inclusione contenenti la proteina (non funzionale), definendo e standardizzando inoltre, le condizioni che consentivano di produrre la più alta percentuale di GFP correttamente ripiegata (in condizioni non denaturanti) e quindi funzionale.
Resumo:
This thesis demonstrates exciton engineering in semiconducting single-walled carbon nanotubes through tunable fluorescent quantum defects. By introducing different functional moieties on the sp2 lattice of carbon nanotubes, the nanotube photoluminescence is systematically tuned over 68 meV in the second near-infrared window. This new class of quantum emitters is enabled by a new chemistry that allows covalent attachment of alkyl/aryl functional groups from their iodide precursors in aqueous solution. Using aminoaryl quantum defects, we show that the pH and temperature of complex fluids can be optically measured through defect photoluminescence that encodes the local environment information. Furthermore, defect-bound trions, which are electron-hole-electron tri-carrier quasi-particles, are observed in alkylated single-walled carbon nanotubes at room temperature with surprisingly high photoluminescence brightness. Collectively, the emission from defect-bound excitons and trions in (6,5)-single walled carbon nanotubes is 18-fold brighter than that of the native exciton. These findings pave the way to chemical tailoring of the electronic and optical properties of carbon nanostructures with fluorescent quantum defects and may find applications in optoelectronics and bioimaging.
Resumo:
Background: Rabies causes 55, 000 annual human deaths globally and about 10,000 people are exposed annually in Nigeria. Diagnosis of animal rabies in most African countries has been by direct microscopic examination. In Nigeria, the Seller’s stain test (SST) was employed until 2009. Before then, both SST and dFAT were used concurrently until the dFAT became the only standard method. Objective: This study was designed to assess the sensitivity and specificity of the SST in relation to the ‘gold standard’ dFAT in diagnosis of rabies in Nigeria. Methods: A total of 88 animal specimens submitted to the Rabies National Reference Laboratory, Nigeria were routinely tested for rabies by SST and dFAT. Results: Overall, 65.9% of the specimens were positive for rabies by SST, while 81.8% were positive by dFAT. The sensitivity of SST in relation to the gold standard dFAT was 81.0% (95% CIs; 69.7% - 88.6%), while the specificity was 100% (95% CIs; 76% - 100%). Conclusion: The relatively low sensitivity of the SST observed in this study calls for its replacement with the dFAT for accurate diagnosis of rabies and timely decisions on administration of PEP to prevent untimely deaths of exposed humans.
Resumo:
A new fluorescent dendrimeric antigen (DeAn) based on a dendron with amoxicilloyl terminal groups has been synthetized. The synthesis implies a novel class of all-aliphatic polyamide dendrimer (BisAminoalkylPolyAmide Dendrimers, or BAPAD).[1] The introduction of a cystamine core allows the incorporation of this dendrons into a 1,8-naphthalimide fluorofore functionalized with a maleimide group. The fluorescence properties of this DeAn has been studied and compared with the properties of an equivalent dendron possessing amino-terminal groups. This DeAn has been used as a synthetic antigen in a biomedical assay that tests the amoxicillin sensitivity of dendritic cells (DC) from tolerant and allergic patients.
Resumo:
Among the four commercial chestnut species the C. dentata (Marsh.) Boskh. and C. sativa P. Mill. has excellent quality but more susceptible to diseases when compared to C. mollissima Blume and C. crenata Siebold & Zucc. which has inferior quality but can be used as rootstocks. This work aimed to evaluate the behavior of chestnut varieties grafted in different rootstocks under São Bento do Sapucaí, São Paulo, Brazil condition. In 1986, eleven chestnut cultivars and hybrids - Ibuki (IB), Izumo (IZ), Kinchu (KI), KM1 (KM2), KM(2) KM(2), Moriowase (MO), Okuni (OK), Taishowase (TAI), Tamatsukuri (TAM), Tiodowase (TIO) and Senri (SEN) (only graft) ? were grafted each other resulting in hundred ten combinations. Fifteen-year later grafted trees with minimum of three plants were evaluated for tree height, trunk diameter above and below graft union and graft compatibility. Randomized blocks with three replications were submitted to analysis of variance for tree height and trunk diameter. Grouping analysis using the PROC CLUSTER ? SAS system was used to describe the pattern of variance among different combinations. Seventy eight combinations in hundred ten showed perfect grafting compatibility 6 months after grafting. Forty seven combinations showed incompatibility after transplanting and the dieback rate in each combination ranged from 25 to 100%. Among seventy eight combinations established in the field twenty six had enough plants for evaluation fifteen-year later. Tree height and trunk diameter showed highly significant difference among the combinations. The highest plant (6 m) was grafted on Moriowase and Tamatsukuri which showed the highest compatibility as rootstock. The harvesting season is from November to May where MOR, IB, TAM, OK and TAI behave as early-season-cultivar and SEN the latest one.
Resumo:
The development of organic materials with 2PA has attracted intensive attention in the past two decades [1]. In two-photon bio-imaging applications the design of the chromophore requires to have a good cross-section (σ2PA) and good biological compatibility which depends on the molecular volume and polarity [2]. In this work, we present the design, synthesis and characterization of new indolium derivatives. These compounds are easy to achieve with good yields and good photophysical properties. In addition, time-dependent density functional theory (TDDFT) has been carried out to investigate the energy level of the ground and excited state. Their spectral properties and assays performed on cultured cells, demonstrate the potential of these compounds as fluorescent probes with application in two-photon bio-imaging.
Resumo:
“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.
Resumo:
Fluorescent proteins (FPs) are extremely valuable biochemical markers which have found a wide range of applications in cellular and molecular biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for in vivo applications in mammalian cell imaging. Fluorescent proteins consist of a chromophore caged in the beta-barrel protein scaffold. The photophysical properties of an FP is determined by its chromophore structure and its interactions with the protein barrel. Application of hydrostatic pressure on FPs results in the modification of the chromophore environment which allows a systematic study of the role of the protein-chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics (MD) computer simulations, I investigated the pressure induced structural changes in the monomeric variants mCherry, mStrawberry, and Citrine. The results explain the molecular basis for experimentally observed pressure responses among FP variants. It is found that the barrel flexibility, hydrogen bonding interactions and chromophore planarity of the FPs can be correlated to their contrasting photophysical properties at vaious pressures. I also investigated the oxygen diffusion pathways in mOrange and mOrange2 which exhibit marked differences in oxygen sensitivities as well as photostability. Such computational identifications of structural changes and oxygen diffusion pathways are important in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.
Resumo:
Conjugated polymers (CPs) are intrinsically fluorescent materials that have been used for various biological applications including imaging, sensing, and delivery of biologically active substances. The synthetic control over flexibility and biodegradability of these materials aids the understanding of the structure-function relationships among the photophysical properties, the self-assembly behaviors of the corresponding conjugated polymer nanoparticles (CPNs), and the cellular behaviors of CPNs, such as toxicity, cellular uptake mechanisms, and sub-cellular localization patterns. ^ Synthetic approaches towards two classes of flexible CPs with well-preserved fluorescent properties are described. The synthesis of flexible poly( p-phenylenebutadiynylene)s (PPBs) uses competing Sonogashira and Glaser coupling reactions and the differences in monomer reactivity to incorporate a small amount (∼10%) of flexible, non-conjugated linkers into the backbone. The reaction conditions provide limited control over the proportion of flexible monomer incorporation. Improved synthetic control was achieved in a series of flexible poly(p-phenyleneethynylene)s (PPEs) using modified Sonogashira conditions. In addition to controlling the degree of flexibility, the linker provides disruption of backbone conjugation that offers control of the length of conjugated segments within the polymer chain. Therefore, such control also results in the modulation of the photophysical properties of the materials. ^ CPNs fabricated from flexible PPBs are non-toxic to cells, and exhibit subcellular localization patterns clearly different from those observed with non-flexible PPE CPNs. The subcellular localization patterns of the flexible PPEs have not yet been determined, due to the toxicity of the materials, most likely related to the side-chain structure used in this series. ^ The study of the effect of CP flexibility on self-assembly reorganization upon polyanion complexation is presented. Owing to its high rigidity and hydrophobicity, the PPB backbone undergoes reorganization more readily than PPE. The effects are enhanced in the presence of the flexible linker, which enables more efficient π-π stacking of the aromatic backbone segments. Flexibility has minimal effects on the self-assembly of PPEs. Understanding the role of flexibility on the biophysical behaviors of CPNs is key to the successful development of novel efficient fluorescent therapeutic delivery vehicles.^
Resumo:
The Pine Wood Nematode (PWN) Bursaphelenchus xylophilus is a severe forest pathogen in countries where it has been introduced and is considered a worldwide quarantine organism. In this study, protein markers for differentiating populations of this nematode were identified by studying differences among four selected Iberian and one American population. These populations were compared by quantitative proteomics (iTRAQ). From a total of 2860 proteins identified using the public database from the B. xylophilus genome project, 216 were unambiguous and significantly differentially regulated in the studied populations. Comparisons of their pairwise ratio were statistically treated and supported in order to convert them into discrete character states, suggesting that 141 proteins were not informative as population specific markers. Application of the Character Compatibility methodology on the remaining 75 proteins (belonging to families with different biological functions) excludes 27 which are incompatible among them. Considering only the compatible proteins, the method selects a subset of 30 specific unique protein markers which allowed the compared classification of the Iberian isolates. This approach makes it easier search for diagnostic tools and phylogenetic inference within species and populations of a pathogen exhibiting a high level of genetic diversity.
Resumo:
This thesis project presents a work based on the study of bis-arylboryl-carbazoles a particular class of aminoboranes. The peculiarity of these compounds is the -B=N+ chemical moiety and their conformational behaviour coming from the combination of steric constrain and conjugation of the B-N bond. Our work is focused on three products: 9-(mesityl(naphthalen-1-yl)boraneyl)-9H-carbazole 1a, 9-(mesityl(2-methylnaphthalen-1-yl)boraneyl)-9H-carbazole 1b and 9-(anthracen-9-yl(mesityl)boraneyl)-9H-carbazole 1c. We firstly focused our attention on the synthesis optimizing conditions. Then the products were synthetized and characterized with NMR. The products were eventually analysed through conformational studies, by a theoretical approach with DFT calculations and by experimental techniques, such as standard kinetic and EXSY. In the end of this work the products were characterized through fluorescence studies both by DFT, TD-DFT calculations and experimentally by emission spectroscopy.
Resumo:
In recent years, the study of restricted rotation bonds in organic compounds has aroused increasing interest. The reason is that this characteristic can lead to obtaining new properties in organic compounds. In this research thesis, an intense investigation was carried out using DFT calculations and experimental evaluation of the barriers to rotational energies, in order to discover new properties deriving from the restricted rotation bonds. Research has been developed in various fields of organic chemistry, ranging from drugs (the atropisomeric atorvastatin in Chapter 3) to luminescent compounds (aryls amino borane in Chapter 4). Furthermore, an organocatalytic central to axial conversion mechanism was investigated through DFT calculations, finding out interesting outcomes (Chapter 5). Finally, a project in collaboration with Dr. Farran and Prof. Vanthuyne of the Aix-Marseille University was done to investigate the interactions in transition states of rotational barriers.
Resumo:
This thesis focuses on automating the time-consuming task of manually counting activated neurons in fluorescent microscopy images, which is used to study the mechanisms underlying torpor. The traditional method of manual annotation can introduce bias and delay the outcome of experiments, so the author investigates a deep-learning-based procedure to automatize this task. The author explores two of the main convolutional-neural-network (CNNs) state-of-the-art architectures: UNet and ResUnet family model, and uses a counting-by-segmentation strategy to provide a justification of the objects considered during the counting process. The author also explores a weakly-supervised learning strategy that exploits only dot annotations. The author quantifies the advantages in terms of data reduction and counting performance boost obtainable with a transfer-learning approach and, specifically, a fine-tuning procedure. The author released the dataset used for the supervised use case and all the pre-training models, and designed a web application to share both the counting process pipeline developed in this work and the models pre-trained on the dataset analyzed in this work.