979 resultados para far infrared, Antarctic clouds, remote sensing, ground-based measurements, radiative transfer
Resumo:
Jerdon's Courser Rhinoptilus bitorquatus is one of the most endangered and least understood birds in the world. It is endemic to scrub habitats in southeast India which have been lost and degraded because of human land use. We used satellite images from 1991 and 2000 and two methods for classifying land cover to quantify loss of Jerdon's Courser habitat. The scrub habitats on which this species depends decreased in area by 11-15% during this short period (9.6 years), predominantly as a result of scrub clearance and conversion to agriculture. The remaining scrub patches were smaller and further from human settlements in 2000 than in 1991, implying that much of the scrub loss had occurred close to human population centres. We discuss the implications of our results for the conservation of Jerdon's Courser and the use of remote sensing methods in conservation.
Resumo:
This paper presents the experimental results on the low temperature absorption and dispersion properties for a variety of frequently used infrared filter substrate materials. Index of refraction (n) and transmission spectra are presented for a range of temperatures 300-50 K for the Group IV materials silicon (Si) and germanium (Ge), and Group II-VI materials zinc selenide (ZnSe), zinc sulphide (ZnS) and cadmium telluride (CdTe). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Cooled infrared filters have been used in pressure modulation and filter radiometry to measure the dynamics, temperature distribution and concentrations of atmospheric elements in various satellite radiometers. Invariably such instruments use precision infrared bandpass filters and coatings for spectral selction, often operating at cryogenic temperatures. More recent developments in the use of spectrally-selective cooled detectors in focal plane arrays have simplified the optical layout and reduced the component count of radiometers but have placed additional demands on both the spectral and physical performance requirements of the filters. This paper describes and contrasts the more traditional radiometers using discrete detectors with those which use focal plane detector array technology, with particular emphasis on the function of the filters and coatings in the two cases. Additionally we discuss the spectral techniques and materials used to fabricate infrared coatings and filters for use in space optics, and give examples of their application in the fabrication of some demanding long wavelength dichroics and filters. We also discuss the effects of the space environment on the stability and durability of high performance infrared filters and materials exposed to low Earth orbit for 69 months on the NASA Long Duration Exposure Facility (LDEF).
Resumo:
Extrapolation of PbTe/II-VI multilayer interference-filter technique from 20 to beyond 40µm is described and PbTe transparency reviewed; improvements below 20µm are reported. A composite filter cutting on steeply at 40µm is described that uses absorptive films of ZnS and As2S3, thin Quartz, and supplementary multilayer interference. Absorptive filters are described containing the II-VI compounds since these are found transparent at wavelengths shorter and longer than their reststrahl.
Resumo:
Interchange reconnection at the Sun, that is, reconnection between a doubly-connected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole boundary, where open fields meet closed loops. The second aspect concerns the means by which the heliospheric magnetic field strength reached record-lows during the recent solar minimum period. A new implication of this work is that interchange reconnection may be responsible for the puzzling, occasional coincidence of the heliospheric current sheet and the interface between fast and slow flow in the solar wind.
Resumo:
A quantitative assessment of Cloudsat reflectivities and basic ice cloud properties (cloud base, top, and thickness) is conducted in the present study from both airborne and ground-based observations. Airborne observations allow direct comparisons on a limited number of ocean backscatter and cloud samples, whereas the ground-based observations allow statistical comparisons on much longer time series but with some additional assumptions. Direct comparisons of the ocean backscatter and ice cloud reflectivities measured by an airborne cloud radar and Cloudsat during two field experiments indicate that, on average, Cloudsat measures ocean backscatter 0.4 dB higher and ice cloud reflectivities 1 dB higher than the airborne cloud radar. Five ground-based sites have also been used for a statistical evaluation of the Cloudsat reflectivities and basic cloud properties. From these comparisons, it is found that the weighted-mean difference ZCloudsat − ZGround ranges from −0.4 to +0.3 dB when a ±1-h time lag around the Cloudsat overpass is considered. Given the fact that the airborne and ground-based radar calibration accuracy is about 1 dB, it is concluded that the reflectivities of the spaceborne, airborne, and ground-based radars agree within the expected calibration uncertainties of the airborne and ground-based radars. This result shows that the Cloudsat radar does achieve the claimed sensitivity of around −29 dBZ. Finally, an evaluation of the tropical “convective ice” profiles measured by Cloudsat has been carried out over the tropical site in Darwin, Australia. It is shown that these profiles can be used statistically down to approximately 9-km height (or 4 km above the melting layer) without attenuation and multiple scattering corrections over Darwin. It is difficult to estimate if this result is applicable to all types of deep convective storms in the tropics. However, this first study suggests that the Cloudsat profiles in convective ice need to be corrected for attenuation by supercooled liquid water and ice aggregates/graupel particles and multiple scattering prior to their quantitative use.
Resumo:
The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.
Resumo:
We make a qualitative and quantitative comparison of numericalsimulations of the ashcloud generated by the eruption of Eyjafjallajökull in April2010 with ground-basedlidar measurements at Exeter and Cardington in southern England. The numericalsimulations are performed using the Met Office’s dispersion model, NAME (Numerical Atmospheric-dispersion Modelling Environment). The results show that NAME captures many of the features of the observed ashcloud. The comparison enables us to estimate the fraction of material which survives the near-source fallout processes and enters into the distal plume. A number of simulations are performed which show that both the structure of the ashcloudover southern England and the concentration of ash within it are particularly sensitive to the height of the eruption column (and the consequent estimated mass emission rate), to the shape of the vertical source profile and the level of prescribed ‘turbulent diffusion’ (representing the mixing by the unresolved eddies) in the free troposphere with less sensitivity to the timing of the start of the eruption and the sedimentation of particulates in the distal plume.
Resumo:
Ground-based aerosol optical depth (AOD) climatologies at three high-altitude sites in Switzerland (Jungfraujoch and Davos) and Southern Germany (Hohenpeissenberg) are updated and re-calibrated for the period 1995 – 2010. In addition, AOD time-series are augmented with previously unreported data, and are homogenized for the first time. Trend analysis revealed weak AOD trends (λ = 500 nm) at Jungfraujoch (JFJ; +0.007 decade-1), Davos (DAV; +0.002 decade-1) and Hohenpeissenberg (HPB; -0.011 decade-1) where the JFJ and HPB trends were statistically significant at the 95% and 90% confidence levels. However, a linear trend for the JFJ 1995 – 2005 period was found to be more appropriate than for 1995 – 2010 due to the influence of stratospheric AOD which gave a trend -0.003 decade-1 (significant at 95% level). When correcting for a recently available stratospheric AOD time-series, accounting for Pinatubo (1991) and more recent volcanic eruptions, the 1995 – 2010 AOD trends decreased slightly at DAV and HPB but remained weak at +0.000 decade-1 and -0.013 decade-1 (significant at 95% level). The JFJ 1995 – 2005 AOD time-series similarly decreased to -0.003 decade-1 (significant at 95% level). We conclude that despite a more detailed re40 analysis of these three time-series, which have been extended by five years to the end of 2010, a significant decrease in AOD at these three high-altitude sites has still not been observed.
Resumo:
Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.