787 resultados para expert system, fuzzy logic, pan stage models, supervisory control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes work done exploring the application of expert system techniques to the domain of designing durable concrete. The nature of concrete durability design is described and some problems from the domain are discussed. Some related work on expert systems in concrete durability are described. Various implementation languages are considered - PROLOG and OPS5, and rejected in favour of a shell - CRYSTAL3 (later CRYSTAL4). Criteria for useful expert system shells in the domain are discussed. CRYSTAL4 is evaluated in the light of these criteria. Modules in various sub-domains (mix-design, sulphate attack, steel-corrosion and alkali aggregate reaction) are developed and organised under a BLACKBOARD system (called DEX). Extensions to the CRYSTAL4 modules are considered for different knowledge representations. These include LOTUS123 spreadsheets implementing models incorporating some of the mathematical knowledge in the domain. Design databases are used to represent tabular design knowledge. Hypertext representations of the original building standards texts are proposed as a tool for providing a well structured and extensive justification/help facility. A standardised approach to module development is proposed using hypertext development as a structured basis for expert systems development. Some areas of deficient domain knowledge are highlighted particularly in the use of data from mathematical models and in gaps and inconsistencies in the original knowledge source Digests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel prosody model in the context of computer text-to-speech synthesis applications for tone languages. We have demonstrated its applicability using the Standard Yorùbá (SY) language. Our approach is motivated by the theory that abstract and realised forms of various prosody dimensions should be modelled within a modular and unified framework [Coleman, J.S., 1994. Polysyllabic words in the YorkTalk synthesis system. In: Keating, P.A. (Ed.), Phonological Structure and Forms: Papers in Laboratory Phonology III, Cambridge University Press, Cambridge, pp. 293–324]. We have implemented this framework using the Relational Tree (R-Tree) technique. R-Tree is a sophisticated data structure for representing a multi-dimensional waveform in the form of a tree. The underlying assumption of this research is that it is possible to develop a practical prosody model by using appropriate computational tools and techniques which combine acoustic data with an encoding of the phonological and phonetic knowledge provided by experts. To implement the intonation dimension, fuzzy logic based rules were developed using speech data from native speakers of Yorùbá. The Fuzzy Decision Tree (FDT) and the Classification and Regression Tree (CART) techniques were tested in modelling the duration dimension. For practical reasons, we have selected the FDT for implementing the duration dimension of our prosody model. To establish the effectiveness of our prosody model, we have also developed a Stem-ML prosody model for SY. We have performed both quantitative and qualitative evaluations on our implemented prosody models. The results suggest that, although the R-Tree model does not predict the numerical speech prosody data as accurately as the Stem-ML model, it produces synthetic speech prosody with better intelligibility and naturalness. The R-Tree model is particularly suitable for speech prosody modelling for languages with limited language resources and expertise, e.g. African languages. Furthermore, the R-Tree model is easy to implement, interpret and analyse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ignorance of user factors can be seen as one of the nontechnical issues contributing to expert system failure. An expert advisory system is built for nonexpert users; the users' acceptance is a very important factor for its successful implementation. If an expert advisory system satisfactorily represents the expertise in the domain, there still remains the question: "Will the end-users use the system?" This paper aims to address users' issues by analysing their reactions towards an expert advisory system called ADGAME, developed to help its users make better decisions in playing a competitive business game. Two experiments with ADGAME have been carried out. The research results show that, when the use of the expert advisory system is optional, there is considerable reluctance to use it, particularly amongst the "worst" potential users. Users also doubt the potential benefits in terms of improved learning and confidence in decisions made. Strangely, the one positive expectation that users had, that the system would save them time, proved not to be the case in practice; ADGAME appears to improve the users' effectiveness rather than their efficiency. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To be competitive in contemporary turbulent environments, firms must be capable of processing huge amounts of information, and effectively convert it into actionable knowledge. This is particularly the case in the marketing context, where problems are also usually highly complex, unstructured and ill-defined. In recent years, the development of marketing management support systems has paralleled this evolution in informational problems faced by managers, leading to a growth in the study (and use) of artificial intelligence and soft computing methodologies. Here, we present and implement a novel intelligent system that incorporates fuzzy logic and genetic algorithms to operate in an unsupervised manner. This approach allows the discovery of interesting association rules, which can be linguistically interpreted, in large scale databases (KDD or Knowledge Discovery in Databases.) We then demonstrate its application to a distribution channel problem. It is shown how the proposed system is able to return a number of novel and potentially-interesting associations among variables. Thus, it is argued that our method has significant potential to improve the analysis of marketing and business databases in practice, especially in non-programmed decisional scenarios, as well as to assist scholarly researchers in their exploratory analysis. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our approach for knowledge presentation is based on the idea of expert system shell. At first we will build a graph shell of both possible dependencies and possible actions. Then, reasoning by means of Loglinear models, we will activate some nodes and some directed links. In this way a Bayesian network and networks presenting loglinear models are generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Web-Centric [3] extension to a previously developed glaucoma expert system that will provide access for doctors and patients from any part of the world. Once implemented, this telehealth solution will publish the services of the Glaucoma Expert System on the World Wide Web, allowing patients and doctors to interact with it from their own homes. This web-extension will also allow the expert system itself to be proactive and to send diagnosis alerts to the registered user or doctor and the patient, informing each one of any emergencies, therefore allowing them to take immediate actions. The existing Glaucoma Expert System uses fuzzy logic learning algorithms applied on historical patient data to update and improve its diagnosis rules set. This process, collectively called the learning process, would benefit greatly from a web-based framework that could provide services like patient data transfer and web- based distribution of updated rules [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a study that focuses on the issue of sup-porting educational experts to choose the right combination of educational methodology and technology tools when designing training and learning programs. It is based on research in the field of adaptive intelligent e-learning systems. The object of study is the professional growth of teachers in technology and in particular that part of their qualification which is achieved by organizing targeted training of teachers. The article presents the process of creating and testing a system to support the decision on the design of training for teachers, leading to more effective implementation of technology in education and integration in diverse educational contexts. ACM Computing Classification System (1998): H.4.2, I.2.1, I.2, I.2.4, F.4.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops and validates the framework of a specialized maintenance decision support system for a discrete part manufacturing facility. Its construction utilizes a modular approach based on the fundamental philosophy of Reliability Centered Maintenance (RCM). The proposed architecture uniquely integrates System Decomposition, System Evaluation, Failure Analysis, Logic Tree Analysis, and Maintenance Planning modules. It presents an ideal solution to the unique maintenance inadequacies of modern discrete part manufacturing systems. Well established techniques are incorporated as building blocks of the system's modules. These include Failure Mode Effect and Criticality Analysis (FMECA), Logic Tree Analysis (LTA), Theory of Constraints (TOC), and an Expert System (ES). A Maintenance Information System (MIS) performs the system's support functions. Validation was performed by field testing of the system at a Miami based manufacturing facility. Such a maintenance support system potentially reduces downtime losses and contributes to higher product quality output. Ultimately improved profitability is the final outcome. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.