906 resultados para engineering design process
Resumo:
Traditional engineering design methods are based on Simon's (1969) use of the concept function, and as such collectively suffer from both theoretical and practical shortcomings. Researchers in the field of affordance-based design have borrowed from ecological psychology in an attempt to address the blind spots of function-based design, developing alternative ontologies and design processes. This dissertation presents function and affordance theory as both compatible and complimentary. We first present a hybrid approach to design for technology change, followed by a reconciliation and integration of function and affordance ontologies for use in design. We explore the integration of a standard function-based design method with an affordance-based design method, and demonstrate how affordance theory can guide the early application of function-based design. Finally, we discuss the practical and philosophical ramifications of embracing affordance theory's roots in ecology and ecological psychology, and explore the insights and opportunities made possible by an ecological approach to engineering design. The primary contribution of this research is the development of an integrated ontology for describing and designing technological systems using both function- and affordance-based methods.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.
Resumo:
With increasing concerns about the impact of global warming on human life, policy makers around the world and researchers have sought for technological solutions that have the potential to attenuate this process. This thesis describes the design and evaluation of an information appliance that aims to increase the use of public transportation. We developed a mobile glanceable display that, being aware of the user’s transportation routines, provides awareness cues about bus arrival time, grounded upon the vision of Ambient Intelligence. We present the design process we followed, from ideation to building a prototype and conducting a field study, and conclude with a set of guidelines for the design of relevant personal information systems. More specifically we seek to test the following hypotheses: 1) That the tangible prototype that provides ambient cues will be used more frequently than a similar purpose mobile app, 2) That the tangible prototype will reduce the waiting time at the bus stop, 3) That the tangible prototype will result to reduced anxiety on passengers, 4) That the tangible prototype will result to an increase in the perceived reliability of the transit service, 5) That the tangible prototype will enhance users’ efficiency in reading the bus schedules and 6) That the tangible prototype will make individuals more likely to use public transit. In a field study, we compare the tangible prototype against the mobile app and a control condition where participants were given no external support in obtaining bus arrival information, other than their existing routines. Using qualitative and quantitative data, we test the aforementioned hypotheses and explore users’ reactions to the prototype we developed.
Resumo:
Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2016-09-29 17:45:16.051
Resumo:
Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.
Resumo:
The South Carolina Department of Transportation routinely retains Professional Consulting Engineering firms to provide engineering design and related professional services for the preparation of construction plans or design-build Request for Proposal bid packages for a wide variety of Federal-aid Highway Program roadway and bridge construction projects throughout South Carolina.The purpose of this project is to examine the current process of determining a "Fair and Reasonable" fixed fee for professional service contracts and to evaluate possible alternative methods including practices in other states that may improve the process, particularly in light of the considerable variation in audited overhead rates among consulting firms. In reviewing such alternative methods particular attention will be given to evaluating the potential impact of the method as an incentive to consulting firms to effectively manage their overhead costs.
Resumo:
Les applications Web en général ont connu d’importantes évolutions technologiques au cours des deux dernières décennies et avec elles les habitudes et les attentes de la génération de femmes et d’hommes dite numérique. Paradoxalement à ces bouleversements technologiques et comportementaux, les logiciels d’enseignement et d’apprentissage (LEA) n’ont pas tout à fait suivi la même courbe d’évolution technologique. En effet, leur modèle de conception est demeuré si statique que leur utilité pédagogique est remise en cause par les experts en pédagogie selon lesquels les LEA actuels ne tiennent pas suffisamment compte des aspects théoriques pédagogiques. Mais comment améliorer la prise en compte de ces aspects dans le processus de conception des LEA? Plusieurs approches permettent de concevoir des LEA robustes. Cependant, un intérêt particulier existe pour l’utilisation du concept patron dans ce processus de conception tant par les experts en pédagogie que par les experts en génie logiciel. En effet, ce concept permet de capitaliser l’expérience des experts et permet aussi de simplifier de belle manière le processus de conception et de ce fait son coût. Une comparaison des travaux utilisant des patrons pour concevoir des LEA a montré qu’il n’existe pas de cadre de synergie entre les différents acteurs de l’équipe de conception, les experts en pédagogie d’un côté et les experts en génie logiciel de l’autre. De plus, les cycles de vie proposés dans ces travaux ne sont pas complets, ni rigoureusement décrits afin de permettre de développer des LEA efficients. Enfin, les travaux comparés ne montrent pas comment faire coexister les exigences pédagogiques avec les exigences logicielles. Le concept patron peut-il aider à construire des LEA robustes satisfaisant aux exigences pédagogiques ? Comme solution, cette thèse propose une approche de conception basée sur des patrons pour concevoir des LEA adaptés aux technologies du Web. Plus spécifiquement, l’approche méthodique proposée montre quelles doivent être les étapes séquentielles à prévoir pour concevoir un LEA répondant aux exigences pédagogiques. De plus, un répertoire est présenté et contient 110 patrons recensés et organisés en paquetages. Ces patrons peuvent être facilement retrouvés à l’aide du guide de recherche décrit pour être utilisés dans le processus de conception. L’approche de conception a été validée avec deux exemples d’application, permettant de conclure d’une part que l’approche de conception des LEA est réaliste et d’autre part que les patrons sont bien valides et fonctionnels. L’approche de conception de LEA proposée est originale et se démarque de celles que l’on trouve dans la littérature car elle est entièrement basée sur le concept patron. L’approche permet également de prendre en compte les exigences pédagogiques. Elle est générique car indépendante de toute plateforme logicielle ou matérielle. Toutefois, le processus de traduction des exigences pédagogiques n’est pas encore très intuitif, ni très linéaire. D’autres travaux doivent être réalisés pour compléter les résultats obtenus afin de pouvoir traduire en artéfacts exploitables par les ingénieurs logiciels les exigences pédagogiques les plus complexes et les plus abstraites. Pour la suite de cette thèse, une instanciation des patrons proposés serait intéressante ainsi que la définition d’un métamodèle basé sur des patrons qui pourrait permettre la spécification d’un langage de modélisation typique des LEA. L’ajout de patrons permettant d’ajouter une couche sémantique au niveau des LEA pourrait être envisagée. Cette couche sémantique permettra non seulement d’adapter les scénarios pédagogiques, mais aussi d’automatiser le processus d’adaptation au besoin d’un apprenant en particulier. Il peut être aussi envisagé la transformation des patrons proposés en ontologies pouvant permettre de faciliter l’évaluation des connaissances de l’apprenant, de lui communiquer des informations structurées et utiles pour son apprentissage et correspondant à son besoin d’apprentissage.
Resumo:
With increasing concerns about the impact of global warming on human life, policy makers around the world and researchers have sought for technological solutions that have the potential to attenuate this process. This thesis describes the design and evaluation of an information appliance that aims to increase the use of public transportation. We developed a mobile glanceable display that, being aware of the user’s transportation routines, provides awareness cues about bus arrival time, grounded upon the vision of Ambient Intelligence. We present the design process we followed, from ideation to building a prototype and conducting a field study, and conclude with a set of guidelines for the design of relevant personal information systems. More specifically we seek to test the following hypotheses: 1) That the tangible prototype that provides ambient cues will be used more frequently than a similar purpose mobile app, 2) That the tangible prototype will reduce the waiting time at the bus stop, 3) That the tangible prototype will result to reduced anxiety on passengers, 4) That the tangible prototype will result to an increase in the perceived reliability of the transit service, 5) That the tangible prototype will enhance users’ efficiency in reading the bus schedules and 6) That the tangible prototype will make individuals more likely to use public transit. In a field study, we compare the tangible prototype against the mobile app and a control condition where participants were given no external support in obtaining bus arrival information, other than their existing routines. Using qualitative and quantitative data, we test the aforementioned hypotheses and explore users’ reactions to the prototype we developed.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
The aim of this thesis is to demonstrate that 3D-printing technologies can be considered significantly attractive in the production of microwave devices and in the antenna design, with the intention of making them lightweight, cheaper, and easily integrable for the production of wireless, battery-free, and wearable devices for vital signals monitoring. In this work, a new 3D-printable, low-cost resin material, the Flexible80A, is proposed as RF substrate in the implementation of a rectifying antenna (rectenna) operating at 2.45 GHz for wireless power transfer. A careful and accurate electromagnetic characterization of the abovementioned material, revealing it to be a very lossy substrate, has paved the way for the investigation of innovative transmission line and antenna layouts, as well as etching techniques, possible thanks to the design freedom enabled by 3D-printing technologies with the aim of improving the wave propagation performance within lossy materials. This analysis is crucial in the design process of a patch antenna, meant to be successively connected to the rectifier. In fact, many different patch antenna layouts are explored varying the antenna dimensions, the substrate etchings shape and position, the feeding line technology, and the operating frequency. Before dealing with the rectification stage of the rectenna design, the hot and long-discussed topic of the equivalent receiving antenna circuit representation is addressed, providing an overview of the interpretation of different authors about the issue, and the position that has been adopted in this thesis. Furthermore, two rectenna designs are proposed and simulated with the aim of minimizing the dielectric losses. Finally, a prototype of a rectenna with the antenna conjugate matched to the rectifier, operating at 2.45 GHz, has been fabricated with adhesive copper on a substrate sample of Flexible80A and measured, in order to validate the simulated results.
Resumo:
The aim of this work is to present a general overview of state-of-the-art related to design for uncertainty with a focus on aerospace structures. In particular, a simulation on a FCCZ lattice cell and on the profile shape of a nozzle will be performed. Optimization under uncertainty is characterized by the need to make decisions without complete knowledge of the problem data. When dealing with a complex problem, non-linearity, or optimization, two main issues are raised: the uncertainty of the feasibility of the solution and the uncertainty of the objective value of the function. In the first part, the Design Of Experiments (DOE) methodologies, Uncertainty Quantification (UQ), and then Uncertainty optimization will be deepened. The second part will show an application of the previous theories on through a commercial software. Nowadays multiobjective optimization on high non-linear problem can be a powerful tool to approach new concept solutions or to develop cutting-edge design. In this thesis an effective improvement have been reached on a rocket nozzle. Future work could include the introduction of multi scale modelling, multiphysics approach and every strategy useful to simulate as much possible real operative condition of the studied design.
Resumo:
The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.
Resumo:
We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.