870 resultados para engineered nanoparticle
Resumo:
According to numerous studies, airborne nanoparticles have a potential to produce serious adverse human health effects when deposited into the respiratory tract. The most important parts of the lung are the alveolar regions with their enormous surface areas and potential to transfer nanoparticles into the blood stream. These effects may be potentiated in case of the elderly, since this population is more susceptible to air pollutants in general and more to nanoparticles than larger particles. The main goal of this investigation was to determine the exposure of institutionalized elders to nanoparticles using Nanoparticle Surface Area Monitor (NSAM) equipment to calculate the deposited surface area (DSA) of nanoparticles into elderly lungs. In total, 193 institutionalized individuals over 65 yr of age were examined in four elderly care centers (ECC). The occupancy daily pattern was achieved by applying a questionnaire, and it was concluded that these subjects spent most of their time indoors, including the bedroom and living room, the indoor microenvironments with higher prevalence of elderly occupancy. The deposited surface area ranged from 10 to 46 mu m(2)/cm(3). The living rooms presented significantly higher levels compared with bedrooms. Comparing PM10 concentrations with nanoparticles deposited surface area in elderly lungs, it is conceivable that living rooms presented the highest concentration of PM10 and were similar to the highest average DSA. The temporal distribution of DSA was also assessed. While data showed a quantitative fluctuation in values in bedrooms, high peaks were detected in living rooms.
Resumo:
The morphological and structural modifications induced in sapphire by surface treatment with femtosecond laser radiation were studied. Single-crystal sapphire wafers cut parallel to the (0 1 2) planes were treated with 560 fs, 1030 nm wavelength laser radiation using wide ranges of pulse energy and repetition rate. Self-ordered periodic structures with an average spatial periodicity of similar to 300 nm were observed for fluences slightly higher than the ablation threshold. For higher fluences the interaction was more disruptive and extensive fracture, exfoliation, and ejection of ablation debris occurred. Four types of particles were found in the ablation debris: (a) spherical nanoparticles about 50 nm in diameter; (b) composite particles between 150 and 400 nm in size; (c) rounded resolidified particles about 100-500 nm in size; and (d) angular particles presenting a lamellar structure and deformation twins. The study of those particles by selected area electron diffraction showed that the spherical nanoparticles and the composite particles are amorphous, while the resolidified droplets and the angular particles, present a crystalline a-alumina structure, the same of the original material. Taking into consideration the existing ablation theories, it is proposed that the spherical nanoparticles are directly emitted from the surface in the ablation plume, while resolidified droplets are emitted as a result of the ablation process, in the liquid phase, in the low intensity regime, and by exfoliation, in the high intensity regime. Nanoparticle clusters are formed by nanoparticle coalescence in the cooling ablation plume. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was the assessment of exposure to ultrafine in the urban environment of Lisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented by measuring the electrical mobility diameter (varying from 18.3 to 128.3 nm) and number of particles that showed higher values than those previously reported for Madrid and Brisbane. Also, electron microscopy showed that the collected particles were composed of carbonaceous agglomerates, typical of particles emitted by the exhaustion of diesel vehicles. Implications: The approach of this study considers the measurement of surface deposited alveolar area of particles in the outdoor urban environment of Lisbon, Portugal. This type of measurements has not been done so far. Only particulate matter with aerodynamic diameters <2.5 (PM2.5) and >10 (PM10) mu m have been measured in outdoor environments and the levels found cannot be found responsible for all the observed health effects. Therefore, the exposure to nano- and ultrafine particles has not been assessed systematically, and several authors consider this as a real knowledge gap and claim for data such as these that will allow for deriving better and more comprehensive epidemiologic studies. Nanoparticle surface area monitor (NSAM) equipments are recent ones and their use has been limited to indoor atmospheres. However, as this study shows, NSAM is a very powerful tool for outdoor environments also. As most lung diseases are, in fact, related to deposition of the alveolar region of the lung, the metric used in this study is the ideal one.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
The application of femtosecond laser interferometry to direct patterning of thin-film magnetic alloys is demonstrated. The formation of stripe gratings with submicron periodicities is achieved in Fe1-xVx (x=18-34wt. %) layers, with a difference in magnetic moments up to Delta mu/mu similar to 20 between adjacent stripes but without any significant development of the topographical relief (<1% of the film thickness). The produced gratings exhibit a robust effect of their anisotropy shape on magnetization curves in the film plane. The obtained data witness ultrafast diffusive transformations associated with the process of spinodal decomposition and demonstrate an opportunity for producing magnetic nanostructures with engineered properties upon this basis.
Resumo:
Dissertation submitted for obtainment of the Master’s Degree in Biotechnology, by the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Abstract Background: Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. Results: A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. Conclusions: Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.
Resumo:
BACKGROUNDWhile the pharmaceutical industry keeps an eye on plasmid DNA production for new generation gene therapies, real-time monitoring techniques for plasmid bioproduction are as yet unavailable. This work shows the possibility of in situ monitoring of plasmid production in Escherichia coli cultures using a near infrared (NIR) fiber optic probe. RESULTSPartial least squares (PLS) regression models based on the NIR spectra were developed for predicting bioprocess critical variables such as the concentrations of biomass, plasmid, carbon sources (glucose and glycerol) and acetate. In order to achieve robust models able to predict the performance of plasmid production processes, independently of the composition of the cultivation medium, cultivation strategy (batch versus fed-batch) and E. coli strain used, three strategies were adopted, using: (i) E. coliDH5 cultures conducted under different media compositions and culture strategies (batch and fed-batch); (ii) engineered E. coli strains, MG1655endArecApgi and MG1655endArecA, grown on the same medium and culture strategy; (iii) diverse E. coli strains, over batch and fed-batch cultivations and using different media compositions. PLS models showed high accuracy for predicting all variables in the three groups of cultures. CONCLUSIONNIR spectroscopy combined with PLS modeling provides a fast, inexpensive and contamination-free technique to accurately monitoring plasmid bioprocesses in real time, independently of the medium composition, cultivation strategy and the E. coli strain used.
Resumo:
This paper shows several ways to analyse the performance of a safety barrier, depending on the objective to be achieved and present a method to analyse binary components usually present on sensor systems of safety barriers. An application example of a water-based fire system is presented and the Probability of Failure on Demand (PFD) of the sensor system is determined based on the analysis of pressure switches installed in this safety barrier. The knowledge of such information will allow the determination of safety barrier’s availability.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Systems Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Durante séculos a madeira foi dos materiais mais privilegiados e usados na construção. Ainda hoje, existem construções antigas em madeira em bom estado de conservação e que, desempenham as suas funções adequadamente. Com o aparecimento do betão e do aço, os projetistas deixaram de usar este tipo de estruturas. Isto provocou um desinteresse na indústria da madeira, adiando a criação de regulamentos e normas relativamente às exigências funcionais deste tipo de estruturas. Com a necessidade da reabilitação do património edificado, verifica-se uma inversão desta tendência, devido às edificações no centro histórico serem constituídas por estruturas de madeira, essencialmente os pavimentos e coberturas. Na maioria das vezes estas estruturas apresentam um elevado nível de degradação e a solução mais rentável é demolir. Os pavimentos de madeira são então substituídos por lajes aligeiradas ou de betão armado provocando alterações estruturais inadequadas nas fachadas a manter. Pretende-se com esta dissertação mostrar as potencialidades dos pavimentos de madeira e assim incentivar ao seu uso, principalmente nas áreas a reabilitar. São analisados todos os regulamentos e normas aplicáveis às exigências estruturais, térmicas, acústicas e contra incêndio dos pavimentos de madeira. A análise da normalização aplicável vai ser sintetizada, ou seja, só vão ser referidos os aspetos a ter em conta para a verificação das exigências funcionais em pavimentos de madeira. A aplicação dos conceitos e das verificações necessárias são aplicadas a um pavimento de madeira a ser construído na parcela C4 do Quarteirão das Cardosas. Os resultados obtidos neste caso de estudo são encorajadores, e abrem uma perspetiva das potencialidades que este sistema construtivo apresenta.
Resumo:
Rehabilitation is becoming more and more usual in the construction sector in Portugal. The introduction of newer construction materials and technical know-how of integrating different materials for achieving desired engineering goals is an important step to the development of the sector. Wood industry is also getting more and more adapted to composite technologies with the introduction of the so called “highly engineered wood products” and with the use of modification treatments. This work is an attempt to explain the viability of using stainless steel and glass fibre reinforced polymer (GFRP) as reinforcements in wood beams. This thesis specifically focuses on the flexural behaviour of Portuguese Pine unmodified and modified wood beams. Two types of modification were used: 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU) resin and amid wax. The behaviour of the material was analysed with a nonlinear model. The latter model simulates the behaviour of the reinforced wood beams under flexural loading. Small-scale beams (1:15) were experimented in flexural bending and the experimental results obtained were compared with the analytical model results. The experiments confirm the viability of the reinforcing schemes and the working procedures. Experimental results showed fair agreement with the nonlinear model. A strength increase between 15% and 80% was achieved. Stiffness increased by 40% to 50% in beams reinforced with steel but no significant increase was achieved with the glass fibre reinforcement.
Resumo:
WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.
Resumo:
Potentiometric detection with homemade polymeric membrane microelectrodes was coupled to a magnetic sandwich immunoassay for Salmonella typhimurium determination. Cadmium and sodium ion selective electrodes were used respectively as indicator and pseudo-reference electrodes and were prepared in pipette tips to allow potentiometric measurements in microliter sample volumes. In the proposed method, the concentration of S. typhimurium was proportional to the amount of cadmium released upon dissolution of a CdS nanoparticle labeled to the secondary detection antibody. The limit of detection was 2 cells per 100 μL. The immunomagnetic assay with potentiometric detection is suitable for sensitive and rapid (average total time per assay of 75 minutes) detection of S. typhimurium in milk samples. The proposed method is easy to perform, safe, sensitive, and low cost and has potential for in situ analysis.