955 resultados para electric pile
Resumo:
The molecular method is used to obtain nuclear electric quadrupole moment (NQM) values for hafnium through electric field gradients (EFGs) at this nucleus in HfO and HfS. Dirac-Coulomb calculations with the Coupled Cluster approach, DC-CCSD (T) and DC-CCSD-T, were carried out to achieve the most accurate estimates of these EFGs. Higher order corrections are also added. Hence, the most reliable values for 177Hf and 179Hf determined here are 3319(33) and 3750(37) mbarn, respectively, in nice accordance with the best currently accepted NQMs for this element. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Full validation of the electrochemical mechanisms so far postulated as driving force of electric field-assisted non-spontaneous crystallization development in given glasses has suffered experimental restrictions. In this work, we looked into origin of this phenomenon in lead oxyfluoroborate glasses, resulting in beta-PbF2 growth even below the corresponding glass transition temperatures, through achieving a systematic study of not only Pt,Ag/Glass/Ag,Pt- but also Pt,Ag/Glass/YSZ:PbF2/Ag,Pt-type cells, where YSZ:PbF2 represents a two-phase system (formed by Y2O3-doped ZrO2 and PbF2). It is demonstrated that crystallization induction in these glasses involves Pb2+ ions reduction at the cathode, the phenomenon being, however, confirmed only when the F- ions were simultaneously also able to reach the anode for oxidation, after assuring either a direct glass-anode contact or percolation pathways for free fluoride migration across the YSZ:PbF2 mixtures. A further support of this account is that the electrochemically induced beta-PbF2 phase crystallizes showing ramified-like microstructure morphology that arises, accordingly, from development of electroconvective diffusion processes under electric field action.
Resumo:
This work has been supported by Brazilian agencies FAPESP, CNPq, CAPES and grants MICINN BFU200908473 and TIN 201019607, SpanishBrazilian Cooperation PHB20070008 and 7ª Convocatoria De PROYECTOS de COOPERACION INTERUNIVERSITARIAUAMSANTANDER con America Latina
Resumo:
The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed.
Resumo:
Programa de doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería Instituto Universitario (SIANI)
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.
Resumo:
[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.
Resumo:
[EN]When analysing the seismic response of pile groups, a vertically-incident wavefiel is usually employed even though it doesnot necessarily correspond to the worst case scenario. This work aims to study the influence of both type of seismic body wave and its angle of incidence on the dynamic response of pile foundations.
Resumo:
[EN] This paper aims to contribute to clarify whether the use of battered piles has a positive or negative influence on the dynamic response of deep foundations and superstructures. For this purpose, the dynamic response of slender and non-slender structures supported on several configurations of 2X2 and 3X3 pile groups including battered elements is obtained through a procedure based on a substructuring model whick takes soil-structure interaction into account.
Resumo:
[EN]This paper presents our research about nucleation and its dependency with external conditions, as well as the internal characteristics of the solution itself. Among the research lines of our group, we has been studying the influence of electric fields over two different but related compounds: Lithium-Potassium Sulfate and Lithium-Amonium Sulfate, which both of them show a variation on the nucleation ratio when an electric field is applied during the crystal growth. Moreover, in this paper will be explained a laboratory protocol to teach universitary Science students the nucleation process itself and how it depends on external applied conditions, e.g. electric fields.
Resumo:
[EN]This work presents the calibration and validation of an air quality finite element model applied to emissions from a thermal power plant located in Gran Canaria. The calibration is performed using genetic algorithms. To calibrate and validate the model, the authors use empirical measures of pollutants concentrations from 4 stations located nearby the power plant; an hourly record per station during 3 days is available. Measures from 3 stations will be used to calibrate, while validation will use measures from the remaining station…
Resumo:
The purpose of the work is: define and calculate a factor of collapse related to traditional method to design sheet pile walls. Furthermore, we tried to find the parameters that most influence a finite element model representative of this problem. The text is structured in this way: from chapter 1 to 5, we analyzed a series of arguments which are usefull to understanding the problem, while the considerations mainly related to the purpose of the text are reported in the chapters from 6 to 10. In the first part of the document the following arguments are shown: what is a sheet pile wall, what are the codes to be followed for the design of these structures and what they say, how can be formulated a mathematical model of the soil, some fundamentals of finite element analysis, and finally, what are the traditional methods that support the design of sheet pile walls. In the chapter 6 we performed a parametric analysis, giving an answer to the second part of the purpose of the work. Comparing the results from a laboratory test for a cantilever sheet pile wall in a sandy soil, with those provided by a finite element model of the same problem, we concluded that:in modelling a sandy soil we should pay attention to the value of cohesion that we insert in the model (some programs, like Abaqus, don’t accept a null value for this parameter), friction angle and elastic modulus of the soil, they influence significantly the behavior of the system (structure-soil), others parameters, like the dilatancy angle or the Poisson’s ratio, they don’t seem influence it. The logical path that we followed in the second part of the text is reported here. We analyzed two different structures, the first is able to support an excavation of 4 m, while the second an excavation of 7 m. Both structures are first designed by using the traditional method, then these structures are implemented in a finite element program (Abaqus), and they are pushed to collapse by decreasing the friction angle of the soil. The factor of collapse is the ratio between tangents of the initial friction angle and of the friction angle at collapse. At the end, we performed a more detailed analysis of the first structure, observing that, the value of the factor of collapse is influenced by a wide range of parameters including: the value of the coefficients assumed in the traditional method and by the relative stiffness of the structure-soil system. In the majority of cases, we found that the value of the factor of collapse is between and 1.25 and 2. With some considerations, reported in the text, we can compare the values so far found, with the value of the safety factor proposed by the code (linked to the friction angle of the soil).
Resumo:
[EN]This work presents the calibration and validation of an air quality finite element model applied to the surroundings of Jinamar electric power plant in Gran Canaria island (Spain). The model involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The main advantage of the model is the treatment of complex terrains that introduces an alternative to the standard implementation of current models. In addition, it improves the computational cost through the use of unstructured meshes...