983 resultados para egg size
Resumo:
Brain size and architecture exhibit great evolutionary and ontogenetic variation. Yet, studies on population variation (within a single species) in brain size and architecture, or in brain plasticity induced by ecologically relevant biotic factors have been largely overlooked. Here, I address the following questions: (i) do locally adapted populations differ in brain size and architecture, (ii) can the biotic environment induce brain plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity? In the first two chapters I report large variation in both absolute and relative brain size, as well as in the relative sizes of brain parts, among divergent nine-spined stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent divergence, implying natural selection being responsible for the observed patterns. Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory centre) and telencephala (involved in learning) than pond sticklebacks. Further, I demonstrate the importance of common garden studies in drawing firm evolutionary conclusions. In the following three chapters I show how the social environment and perceived predation risk shapes brain development. In common frog (Rana temporaria) tadpoles, I demonstrate that under the highest per capita predation risk, tadpoles develop smaller brains than in less risky situations, while high tadpole density results in enlarged tectum opticum (visual brain centre). Visual contact with conspecifics induces enlarged tecta optica in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are available, bulbus olfactorius become enlarged.Perceived predation risk results in smaller hypothalami (complex function) in sticklebacks. Further, group-living has a negative effect on relative brain size in the competition-adapted pond sticklebacks, but not in the predation-adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi olfactorii than pond fish regardless of predation. In sum, my studies demonstrate how applying a microevolutionary approach can help us to understand the enormous variation observed in the brains of wild animals a point-of-view which I high-light in the closing review chapter of my thesis.
Resumo:
Following an earlier study (J. Am. Chem Soc. 2007, 129, 4470) describing a very unusual growth kinetics of ZnO nanoparticles, we critically evaluate here the proposed mechanism involving a crucial role of the alkali base ion in controlling the growth of ZnO nanoparticles using other alkali bases, namely, LiOH and KOH. While confirming the earlier conclusion of the growth of ZnO nanoparticles being hindered by an effective passivating layer of cations present in the reaction mixture and thereby generalizing this phenomenon, present experimental data reveal an intriguing nonmonotonic dependence of the passivation efficacy on the ionic size of the alkali base ion. This unexpected behavior is rationalized on the basis of two opposing factors: (a) solvated cationic radii and (b) dissociation constant of the base.
Resumo:
The rate of breakage of feed in ball milling is usually represented in the form of a first-order rate equation. The equation was developed by treating a simple batch test mill as a well mixed reactor. Several case of deviation from the rule have been reported in the literature. This is attributed to the fact that accumulated fines interfere with the feed material and breaking events are masked by these fines. In the present paper, a new rate equation is proposed which takes into account the retarding effect of fines during milling. For this purpose the analogy of diffusion of ions through permeable membranes is adopted, with suitable modifications. The validity of the model is cross checked with the data obtained in batch grinding of ?850/+600 ?m size quartz. The proposed equation enables calculation of the rate of breakage of the feed at any instant of time.
Resumo:
An attempt has been made to systematically investigate the effects of microstructural parameters, such as the prior austenite grain size (PAGS), in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels in a quenched and tempered high-strength steel. By austenitizing at various temperatures, the PAGS was varied from about 0.7 to 96 μm. The microstructures with these grain sizes were tempered at 200 °C, 400 °C, and 530 °C and tested for fatigue thresholds and crack closure. It has been found that, in general, three different trends in the dependence of both the total threshold stress intensity range, ΔK th , and the intrinsic threshold stress intensity range, ΔK eff, th , on the PAGS are observable. By considering in detail the factors such as cyclic stress-strain behavior, environmental effects on FCG, and embrittlement during tempering, the present observations could be rationalized. The strong dependence of ΔK th and ΔK eff, th on PAGS in microstructures tempered at 530 °C has been primarily attributed to cyclic softening and thereby the strong interaction of the crack tip deformation field with the grain boundary. On the other hand, a less strong dependence of ΔK th and ΔK eff, th on PAGS is suggested to be caused by the cyclic hardening behavior of lightly tempered microstructures occurring in 200 °C temper. In both microstructures, crack closure influenced near-threshold FCG (NTFCG) to a significant extent, and its magnitude was large at large grain sizes. Microstructures tempered at the intermediate temperatures failed to show a systematic variation of ΔKth and ΔKeff, th with PAGS. The mechanisms of intergranular fracture vary between grain sizes in this temper. A transition from “microstructure-sensitive” to “microstructure-insensitive” crack growth has been found to occur when the zone of cyclic deformation at the crack tip becomes more or less equal to PAGS. Detailed observations on fracture morphology and crack paths corroborate the grain size effects on fatigue thresholds and crack closure.
Resumo:
The effects of molecular size on the dynamics of polar solvation are studied by using a microscopic theory which includes the translational relaxation modes of the solvent consistently. It is shown that while in the absence of the translational contribution the solvation rate increases with the size of the solute (in agreement with the conclusions of the nonequilibrium MSA theory),a complete reversal of the solute size dependence occurs when translational modes make a significant contribution to the solvent polarization relaxation.
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.
Resumo:
Molecular dynamics calculations are reported for Xe in sodium Y zeolite with varying strengths of sorbate-zeolite dispersion interaction. In the absence of any dispersion interaction between the sorbate and the zeolite, the presence of the zeolite has a purely geometrical role. Increase in the strength of the sorbate-zeolite interaction increases the monomer population and decreases the population of dimers and higher sized clusters. The lifetime of the monomers as well as dimers increases with the strength of the dispersion interaction. The observed variations in the lifetime and the population of the different sized clusters is explained in terms of the changes in the potential energy surface caused by the increase in the strength of the dispersion interaction.
Resumo:
In an earlier study, we reported on the excitation of large-scale vortices in Cartesian hydrodynamical convection models subject to rapid enough rotation. In that study, the conditions for the onset of the instability were investigated in terms of the Reynolds (Re) and Coriolis (Co) numbers in models located at the stellar North pole. In this study, we extend our investigation to varying domain sizes, increasing stratification, and place the box at different latitudes. The effect of the increasing box size is to increase the sizes of the generated structures, so that the principal vortex always fills roughly half of the computational domain. The instability becomes stronger in the sense that the temperature anomaly and change in the radial velocity are observed to be enhanced. The model with the smallest box size is found to be stable against the instability, suggesting that a sufficient scale separation between the convective eddies and the scale of the domain is required for the instability to work. The instability can be seen upto the colatitude of 30 degrees, above which value the flow becomes dominated by other types of mean flows. The instability can also be seen in a model with larger stratification. Unlike the weakly stratified cases, the temperature anomaly caused by the vortex structures is seen to depend on depth.
Resumo:
Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, N-e, are widely varying. Models assuming HIV-1 evolution to be neutral estimate N-e similar to 10(2)-10(4), smaller than the inverse mutation rate of HIV-1 (similar to 10(5)), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates N-e>10(5), suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate N-e similar to 10(3)-10(4), implying predominantly stochastic evolution. Interestingly, we find that N-e and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of N-e>10(5) reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with N-e similar to 10(3)-10(4) may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.
Size dependence of the bulk modulus of semiconductor nanocrystals from first-principles calculations
Resumo:
The variation in the bulk modulus of semiconductor nanoparticles has been studied within first-principles electronic-structure calculations using the local density approximation (LDA) for the exchange correlation. Quantum Monte Carlo calculations carried out for a silicon nanocrystal Si87H76 provided reasonable agreement with the LDA results. An enhancement was observed in the bulk modulus as the size of the nanoparticle was decreased, with modest enhancements being predicted for the largest nanoparticles studied here, a size just accessible in experiments. To access larger sizes, we fit our calculated bulk moduli to the same empirical law for all materials, the asymptote of which is the bulk value of the modulus. This was found to be within 2-10% of the independently calculated value. The origin of the enhancement has been discussed in terms of Cohen's empirical law M.L. Cohen, Phys. Rev. B 32, 7988 (1985)] as well as other possible scenarios.
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.
Resumo:
We report a large decrease in tetragonal to cubic phase transformation temperature when grain size of bulk CuFe2O4 is reduced by mechanical ball milling. The change in phase transformation temperature was inferred from in situ high temperature conductivity and x-ray diffraction measurements. The decrease in conductivity with grain size suggests that ball milling has not induced any oxygen vacancy while the role of cation distribution in the observed decrease in phase transformation temperature is ruled out from in-field Fe-57 Mossbauer and extended x-ray absorption fine structure measurements. The reduction in the phase transformation temperature is attributed to the stability of structures with higher crystal symmetry at lower grain sizes due to negative pressure effect. (C) 2011 American Institute of Physics. doi: 10.1063/1.3493244]