975 resultados para ecological water requirement
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms. However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems. Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750 ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and ~7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience of Indo-Pacific coral reefs within this century.
Resumo:
Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.
Resumo:
Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and >1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide.
Resumo:
Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and >1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide.
Resumo:
Les organismes aquatiques sont adaptés à une grande variabilité hydrique et thermique des rivières. Malgré ceci, la régulation des eaux suscite des changements aux débits qui peuvent provoquer des impacts négatifs sur la biodiversité et les processus écologiques en rivière. Celle-ci peut aussi causer des modifications au niveau des régimes thermiques et des caractéristiques de l’habitat du poisson. Des données environnementales et biologiques décrivant l’habitat du poisson existent, mais elles sont incomplètes pour plusieurs rivières au Canada et de faible qualité, limitant les relations quantitatives débit-température-poissons à un petit nombre de rivières ou à une région étudiée. La recherche menée dans le cadre de mon doctorat concerne les impacts de la génération d'hydroélectricité sur les rivières; soit les changements aux régimes hydriques et thermiques reliés à la régulation des eaux sur la variation des communautés ichtyologiques qui habitent les rivières régulées et naturelles au Canada. Suite à une comparaison d’échantillonnage de pêche, une méthode constante pour obtenir des bons estimés de poisson (richesse, densité et biomasse des espèces) a été établie pour évaluer la structure de la communauté de poissons pour l’ensemble des rivières ciblées par l’étude. Afin de mieux comprendre ces changements environnementaux, les principales composantes décrivant ces régimes ont été identifiées et l’altération des régimes hydriques pour certaines rivières régulées a été quantifiée. Ces résultats ont servi à établir la relation significative entre le degré de changement biotique et le degré de changement hydrique pour illustrer les différences entre les régimes de régulation. Pour faire un complément aux indices biotiques déjà calculés pour l’ensemble des communautés de poissons (diversité, densité et biomasse des espèces par rivière), les différences au niveau des guildes de poissons ont été quantifiées pour expliquer les divers effets écologiques dus aux changements de régimes hydriques et thermiques provenant de la gestion des barrages. Ces derniers résultats servent à prédire pour quels traits écologiques ou groupes d’espèces de poissons les composantes hydriques et thermiques sont importantes. De plus, ces derniers résultats ont servi à mettre en valeur les variables décrivant les régimes thermiques qui ne sont pas toujours inclues dans les études hydro-écologiques. L’ensemble des résultats de cette thèse ont des retombées importantes sur la gestion des rivières en évaluant, de façon cohérente, l’impact de la régulation des rivières sur les communautés de poissons et en développant des outils de prévision pour la restauration des écosystèmes riverains.
Resumo:
According to the U.S. National Environmental Policy Act of 1969 (NEPA), federal action to manipulate habitat for species conservation requires an environmental impact statement, which should integrate natural, physical, economic, and social sciences in planning and decision making. Nonetheless, most impact assessments focus disproportionately on physical or ecological impacts rather than integrating ecological and socioeconomic components. We developed a participatory social-ecological impact assessment (SEIA) that addresses the requirements of NEPA and integrates social and ecological concepts for impact assessments. We cooperated with the Bureau of Land Management in Idaho, USA on a project designed to restore habitat for the Greater Sage-Grouse (Centrocercus urophasianus). We employed questionnaires, workshop dialogue, and participatory mapping exercises with stakeholders to identify potential environmental changes and subsequent impacts expected to result from the removal of western juniper (Juniperus occidentalis). Via questionnaires and workshop dialogue, stakeholders identified 46 environmental changes and associated positive or negative impacts to people and communities in Owyhee County, Idaho. Results of the participatory mapping exercises showed that the spatial distribution of social, economic, and ecological values throughout Owyhee County are highly associated with the two main watersheds, wilderness areas, and the historic town of Silver City. Altogether, the SEIA process revealed that perceptions of project scale varied among participants, highlighting the need for specificity about spatial and temporal scales. Overall, the SEIA generated substantial information concerning potential impacts associated with habitat treatments for Greater Sage-Grouse. The SEIA is transferable to other land management and conservation contexts because it supports holistic understanding and framing of connections between humans and ecosystems. By applying this SEIA framework, land managers and affected people have an opportunity to fulfill NEPA requirements and develop more comprehensive management plans that better reflect the linkages of social-ecological systems.
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2015. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
Although very little is known about the transport, fate and toxic effects of medical compounds in aquatic environments, the presence of these compounds in potable water sources can no longer be overlooked. We can argue that trace concentrations of drugs in the water is relatively a minor problem, however, the current and future demands on global potable freshwater supplies will probably lead to greater incidents of indirect and direct water-reuse situations at the local, regional, and cross-border levels. It is important to remark that the solution of this emerging ecological issue does not rely on new and better wastewater treatment technologies, but a new paradigm of responsibility and the understanding of the relations between anthropogenic actions and their ecological effects as well. The objective of this brief communication is to present the state of the art of research conducted in the last decade in Europe and United States concerning the presence of pharmaceuticals products in aquatic environments.
Resumo:
The biotic potential of the benthic filter feeding freshwater bivalve mollusc Lamellidens marginalis (Lamarck) influencing the nutrient dynamics of the bottom sediments of the lake by means of biodeposition and bioturbation activities were analysed using a lake mesocosm experiment. Five control as well as experimental mesocosms was maintained up to 60 days (d). The factors studied included the percentage of water content of the sediment, percentage of total nitrogen, percentage of organic matter along with the total phosphorus and humic acid content. While total phosphorus and humic acid content of the experimental mesocosoms showed gradual and significant increases from 30d of the experiment to reach the maximum levels after 60d, the percentage of organic matter registered significant increases right from 15d onwards and reached the maximum values after 60d. On the other hand, while the percentage of water content of the sediments of the experimental mesocosoms increased only up to 30d experiment, percentage of nitrogen was increased during the first half and at the fag end of the experiment. All the investigated ecological factors were found to be significantly influenced by the presence of L. marginalis in the experimental mesocosms. The study indicated that the mussel influence the nutrient dynamics of the inhabitant ecosystem through the processes of excretion, biodeposition of pseudofaeces and faeces, along with the bioturbation of the sediments brought about by their ploughing movements. KEYWORDS: freshwater mussel, Lamellidens marginalis, bioturbation, biodeposition, mesocosms.
Resumo:
Biodiversity and distribution of benthic meiofauna in the sediments of the Southern Caspian Sea (Mazandaran) was studied in order to introducing and determining of their relationship with the environmental factors. From 12 stations (ranging in depths 5, 10, 20 and 50 meters), sediment samples were gathered in 6 months (2012). Environmental factors of water near the bottom including temperature, salinity, dissolved oxygen and pH were measured during sampling with CTD and grain size and total organic matter percentage and calcium carbonate were measured in laboratory. In different months, the average water temperature (9.52-23.93), dissolved oxygen (7.71-10.53 mg/L), salinity (10.57±0/07 and 10.75±0/04 ppt), pH (7.44±0/29 and 7.41±0/22), EC (17.97±0/12 and 18.30±0/04μs/cm2), TDS (8.92±0/04 and 9.14±0/02 mg/L), total organic matter (5.83±1/43 and 6.25±0/97%) and calcium carbonate (2.36±0/36 and 1.68±0/19%) were measured respectively. Structure of the sediment samples mostly consisted of fine sand; very fine sand, silt and clay. From the 4 group animals (Foraminifera, Crustacea, Worms and Mollusca), there were identified 40species belong to 29 genera of 25 families. The cosmopolitan foraminifer, Ammonia beccarii caspica, was common in all sampling stations. Result showed that depth was important factor on distribution of meiofauna. Most density of foraminifera and crustacean was observed in depth of 20m and for mollusca and worms observed in 5m. Shannon diversity index decreased with depth that showed in shallow water diversity was higher than deep water. Mean of maximum and minimum Shannon index was obsorvers in depth of 5m and 50 m that was measured in order 0.93 and 0.43. Account of Shannon index showed that this area is under pressure. Account of peioleo index showed distribution in this area was not steady.
Resumo:
The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189 +/- 58 operational taxonomic units (OTUs) but dropped to 27 +/- 12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.
Resumo:
Knowledge of how biota can be used to monitor ecosystem health and assess impacts by human alterations such as land use and management measures taken at different spatial scales is critical for improving the ecological quality of aquatic ecosystems. This knowledge in Uganda is very limited or unavailable yet it is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of aquatic ecosystems. In this study, benthic invertebrate community patterns were sampled between June 2001 and April 2002 and analysed in relation to water quality and catchment land use patterns from three shallow near-shore bays characterized by three major land uses patterns: urban (Murchison Bay); semi-urban (Fielding Bay); rural (Hannington Bay). Variations in density and guild composition of benthic macro-invertebrates communities were evaluated using GIS techniques along an urban-rural gradient of land use and differences in community composition were related to dissolved oxygen and conductivity variation. Based on numerical abundance and tolerance values, Hilsenhoff's Biotic Index ofthe invertebrates was determined in order to evaluate the relative importance of water quality in the three bays. Murchison Bay supported a relatively taxa-poor invertebrate assemblage mainly comprising stenotopic and eurytopic populations of pollution-tolerant groups such as worms and Chironomus sp. with an overall depression in species diversity. On the contrary, the communities in Fielding and Hannington bays were quite similar and supported distinct and diverse assemblages including pollution-intolerant forms such as Ephemeroptera (mayflies), Odonata (dragonflies). The Hilsenhoff Biotic Index in Murchison Bay was 6.53. (indicating poor water quality) compared to 6.34 for Fielding Bay and 5.78 for Hannington Bay (both indicating fair water quality). The characterization of maximum taxa richness balanced among taxa groups with good representation of intolerant individuals in Hannington Bay relative to Fielding and Murchison bays concludes that the bay is the cleanest in terms of water quality. Contrary, the dominance of few taxa with many tolerant iqdividuals present in Murchison Bay indicates that the bay is degraded in terms of water quality. These result are ofimportance when planning conservation and management measures, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g nutrient loading) affect water ecosystems. Therefore, analysis of water quality in relation to macro-invertebrate community composition patterns as bio-indicators can lead to further understanding of their responses to environmental manipulations and perturbations.