948 resultados para dynamical systems theory
Resumo:
This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Resumo:
For uniformly asymptotically affine (uaa) Markov maps on train tracks, we prove the following type of rigidity result: if a topological conjugacy between them is (uaa) at a point in the train track then the conjugacy is (uaa) everywhere. In particular, our methods apply to the case in which the domains of the Markov maps are Canter sets. We also present similar statements for (uaa:) and C-r Markov families. These results generalize the similar ones of Sullivan and de Faria for C-r expanding circle maps with r > 1 and have useful applications to hyperbolic dynamics on surfaces and laminations.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
This paper addresses limit cycles and signal propagation in dynamical systems with backlash. The study follows the describing function (DF) method for approximate analysis of nonlinearities and generalizes it in the perspective of the fractional calculus. The concept of fractional order describing function (FDF) is illustrated and the results for several numerical experiments are analysed. FDF leads to a novel viewpoint for limit cycle signal propagation as time-space waves within system structure.
Resumo:
This paper analyzes several natural and man-made complex phenomena in the perspective of dynamical systems. Such phenomena are often characterized by the absence of a characteristic length-scale, long range correlations and persistent memory, which are features also associated to fractional order systems. For each system, the output, interpreted as a manifestation of the system dynamics, is analyzed by means of the Fourier transform. The amplitude spectrum is approximated by a power law function and the parameters are interpreted as an underlying signature of the system dynamics. The complex systems under analysis are then compared in a global perspective in order to unveil and visualize hidden relationships among them.
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
This paper studies forest fires from the perspective of dynamical systems. Burnt area, precipitation and atmospheric temperatures are interpreted as state variables of a complex system and the correlations between them are investigated by means of different mathematical tools. First, we use mutual information to reveal potential relationships in the data. Second, we adopt the state space portrait to characterize the system’s behavior. Third, we compare the annual state space curves and we apply clustering and visualization tools to unveil long-range patterns. We use forest fire data for Portugal, covering the years 1980–2003. The territory is divided into two regions (North and South), characterized by different climates and vegetation. The adopted methodology represents a new viewpoint in the context of forest fires, shedding light on a complex phenomenon that needs to be better understood in order to mitigate its devastating consequences, at both economical and environmental levels.
Resumo:
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
Resumo:
Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.
Resumo:
This paper applies multidimensional scaling techniques and Fourier transform for visualizing possible time-varying correlations between 25 stock market values. The method is useful for observing clusters of stock markets with similar behavior.
Resumo:
Descrevemos a “ferradura de Smale”, um sistema dinâmico bem conhecido que apresenta um conjunto de propriedades muito importantes em Sistemas Dinâmicos. O estudo da dinâmica da “ferradura de Smale” permitenos entender a importância do conceito de dinâmica simbólica.
Resumo:
Every year forest fires consume large areas, being a major concern in many countries like Australia, United States and Mediterranean Basin European Countries (e.g., Portugal, Spain, Italy and Greece). Understanding patterns of such events, in terms of size and spatiotemporal distributions, may help to take measures beforehand in view of possible hazards and decide strategies of fire prevention, detection and suppression. Traditional statistical tools have been used to study forest fires. Nevertheless, those tools might not be able to capture the main features of fires complex dynamics and to model fire behaviour [1]. Forest fires size-frequency distributions unveil long range correlations and long memory characteristics, which are typical of fractional order systems [2]. Those complex correlations are characterized by self-similarity and absence of characteristic length-scale, meaning that forest fires exhibit power-law (PL) behaviour. Forest fires have also been proved to exhibit time-clustering phenomena, with timescales of the order of few days [3]. In this paper, we study forest fires in the perspective of dynamical systems and fractional calculus (FC). Public domain forest fires catalogues, containing data of events occurred in Portugal, in the period 1980 up to 2011, are considered. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses. The frequency spectra of such signals are determined using Fourier transforms, and approximated through PL trendlines. The PL parameters are then used to unveil the fractional-order dynamics characteristics of the data. To complement the analysis, correlation indices are used to compare and find possible relationships among the data. It is shown that the used approach can be useful to expose hidden patterns not captured by traditional tools.
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.
Resumo:
New arguments proving that successive (repeated) measurements have a memory and actually remember each other are presented. The recognition of this peculiarity can change essentially the existing paradigm associated with conventional observation in behavior of different complex systems and lead towards the application of an intermediate model (IM). This IM can provide a very accurate fit of the measured data in terms of the Prony's decomposition. This decomposition, in turn, contains a small set of the fitting parameters relatively to the number of initial data points and allows comparing the measured data in cases where the “best fit” model based on some specific physical principles is absent. As an example, we consider two X-ray diffractometers (defined in paper as A- (“cheap”) and B- (“expensive”) that are used after their proper calibration for the measuring of the same substance (corundum a-Al2O3). The amplitude-frequency response (AFR) obtained in the frame of the Prony's decomposition can be used for comparison of the spectra recorded from (A) and (B) - X-ray diffractometers (XRDs) for calibration and other practical purposes. We prove also that the Fourier decomposition can be adapted to “ideal” experiment without memory while the Prony's decomposition corresponds to real measurement and can be fitted in the frame of the IM in this case. New statistical parameters describing the properties of experimental equipment (irrespective to their internal “filling”) are found. The suggested approach is rather general and can be used for calibration and comparison of different complex dynamical systems in practical purposes.
Resumo:
One of the most popular approaches to path planning and control is the potential field method. This method is particularly attractive because it is suitable for on-line feedback control. In this approach the gradient of a potential field is used to generate the robot's trajectory. Thus, the path is generated by the transient solutions of a dynamical system. On the other hand, in the nonlinear attractor dynamic approach the path is generated by a sequence of attractor solutions. This way the transient solutions of the potential field method are replaced by a sequence of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We discuss at a theoretical level some of the main differences of these two approaches.