986 resultados para drug concentration
Resumo:
This paper provides a descriptive overview of options for diversion of drug-related offenders from the criminal justice system. Drug-related offences include drug offences (for example, possession of a prohibited substance); offences that are directly linked to intoxication (for example, drink-driving or assault); and offences committed to support drug use (for example, theft). After an offence has been detected by police, multiple opportunities for diversion occur throughout the criminal justice process. (a) Pre-arrest: when an offence is first detected, prior to a charge being laid. This is known as police diversion and includes fines, warnings and cautions, sometimes with educational information or referral to assessment and treatment. (b) Pre-trial: when a charge is made but before the matter is heard at court. Examples are treatment as a condition of bail, conferencing and prosecutor discretion. (c) Pre-sentence: a delay of sentence while assessment and treatment are sought. (d) Post-sentence: as part of sentencing, for example suspended sentences, drug courts, noncustodial sentences and circle sentencing. (e) Pre-release: prior to release from a sentence, on parole. Issues for diversion programmes include net widening, the ethics of coercion to treatment, the needs of families and intersectoral collaboration. A framework for diversion is presented in which increasingly treatment-focused and coercive diversion strategies are used as offenders' criminal careers and drug problems increase.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
Aims To compare heroin and other opiate use of heroin overdose fatalities, current street heroin users and drug-free therapeutic community clients. Design Hair morphine concentrations that assess heroin use and other opiate use in the 2 months preceding interview or death were compared between heroin overdose fatalities diagnosed by forensic pathologists (fOD) (n = 42), current street heroin users (CU) (n = 100) and presumably abstinent heroin users in a drug-free therapeutic community (TC) (n = 50). Setting Sydney, Australia. Findings The mean age and gender breakdown of the three samples were 32.3 years, 83% male (FOD), 28.7 years, 58% male (CU) and 28.6 years, 60% male (TC). The median blood morphine concentration among the FOD cases was 0.35 mg/l, and 82% also had other drugs detected. There were large differences between the three groups in hair morphine concentrations, with the CU group (2.10 ng/mg) having concentration approximately four times that of the FOD group (0.53 ng/mg), which in turn had a concentration approximately six times that of the TC group (0.09 ng/mg). There were no significant differences between males and females in hair concentrations within any of the groups. Hair morphine concentrations were correlated significantly with blood morphine concentrations among FOD cases (r = 0.54), and self-reported heroin use among living participants (r = 0.57). Conclusions The results indicate that fatal cases had a lower degree of chronic opiate intake than the active street users, but they were not abstinent during this period.
Resumo:
In contrast to curative therapies, preventive therapies are administered to largely healthy individuals over long periods. The risk-benefit and cost-benefit ratios are more likely to be unfavourable, making treatment decisions difficult. Drug trials provide insufficient information for treatment decisions, as they are conducted on highly selected populations over short durations, estimate only relative benefits of treatment and offer little information on risks and costs. Epidemiological modelling is a method of combining evidence from observational epidemiology and clinical trials to assist in clinical and health policy decision-making. It can estimate absolute benefits, risks and costs of long-term preventive strategies, and thus allow their precise targeting to individuals for whom they are safest and most cost-effective. Epidemiological modelling also allows explicit information about risks and benefits of therapy to be presented to patients, facilitating informed decision-making.
Resumo:
In recent work, the concentration index has been widely used as a measure of income-related health inequality. The purpose of this note is to illustrate two different methods for decomposing the overall health concentration index using data collected from a Short Form (SF-36) survey of the general Australian population conducted in 1995. For simplicity, we focus on the physical functioning scale of the SF-36. Firstly we examine decomposition 'by component' by separating the concentration index for the physical functioning scale into the ten items on which it is based. The results show that the items contribute differently to the overall inequality measure, i.e. two of the items contributed 13% and 5%, respectively, to the overall measure. Second, to illustrate the 'by subgroup' method we decompose the concentration index by employment status. This involves separating the population into two groups: individuals currently in employment; and individuals not currently employed. We find that the inequality between these groups is about five times greater than the inequality within each group. These methods provide insights into the nature of inequality that can be used to inform policy design to reduce income related health inequalities. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
The recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted.We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques. Direct evidence for oligomerization of kalata B2 was shown by sedimentation velocity experiments in which a method for determining size distribution of polydisperse molecules in solution was employed. The shape of the oligomers appears to be spherical. Both sedimentation velocity and equilibrium experiments indicate that in phosphate buffer kalata B1 exists mainly as a monomer, even at millimolar concentrations. In contrast, at 1.6 mM, kalata B2 exists as an equilibrium mixture of monomer (30%), tetramer (42%), octamer (25%), and possibly a small proportion of higher oligomers. The results from the sedimentation equilibrium experiments show that this self-association is concentration dependent and reversible. We link our findings to the three-dimensional structures of both cyclotides, and propose two putative interaction interfaces on opposite sides of the kalata B2 molecule, one involving a hydrophobic interaction with the Phe(6), and the second involving a charge-charge interaction with the Asp(25) residue. An understanding of the factors affecting solution aggregation is of vital importance for future pharmaceutical application of these molecules.
Resumo:
The complex and variable composition of honey, depending on source, season and processing, means different honey samples could cause variation in the characteristics of the finished product. The objective of this study was to determine how the minor components present in honey affect starch gelatinization. A Rapid Visco Analyser was used to measure changes in viscosity when unmodified maize starch was gelatinized in a honey or model sugar solution. When honey was compared to equivalent blends of sugars, there was an increase in starch viscosity with increasing levels of addition. However, at the same level, honey gave a lower viscosity than the blends of sugars. Honeys from different sources (differing in pH and amylase activity) show a varied effect on starch gelatinization, with starch viscosity increasing with addition level for six of the honeys, but decreasing with increasing addition level for two honey samples. Varying the pH also produced variation in starch gelatinization patterns between honey types. Between pH 3.0 and 4.0, starch viscosity was similar for all four honey types studied, while above this pH there were differences between all honey types. As expected, starch viscosity decreased as the solution pH neared the optimum for honey amylase activity (pH 5.3-5.6), though it did not increase as the pH moved away from the honey amylase activity optimum. Differences between honey samples, and between honey and a model sugar mixture, in their effect on starch gelatinization was attributed to honey amylase activity and the composition and concentration of minor organic compounds present. Crown Copyright (C) 2003 Published by Elsevier Ltd. on behalf of Swiss Society of Food Science and Technology
Resumo:
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical treatment of a synthetic tannery wastewater prepared with 30 compounds used in animal skin processing was studied. Electrolyses were performed in a one-compartment flow cell at a current density of 20 mA cm(-2), using a dimensionally stable anode (DSA (R)) of composition Ti/Ir(0.10)Sn(0.90)O(2) as the working electrode. Effects of chloride concentration and presence of sulfate were evaluated. Variation in the concentration of phenolic compounds as a function of electrolysis time revealed a first-order exponential decay; faster phenol removals were obtained with increasing chloride concentration in the wastewater. Lower phenol removals were obtained in the presence of sulfate. Higher chloride concentrations led to a faster decrease in total organic carbon (TOC), chemical oxygen demand (COD), and absorbance values at 228 nm. Faster wastewater color removal, higher current efficiency and lower energy consumption were also obtained. This electrochemical treatment was also able to reduce the wastewater toxicity for Daphnia similis. (C) 2008 Elsevier Ltd. All rights reserved.