957 resultados para dopamine receptor expression
Resumo:
Radiolabeled somatostatin analogues have been successfully used for targeted radiotherapy and for imaging of somatostatin receptor (sst1-5)-positive tumors. Nevertheless, these analogues are subject to improving their tumor-to-nontarget ratio to enhance their diagnostic or therapeutic properties, preventing nephrotoxicity. In order to understand the influence of lipophilicity and charge on the pharmacokinetic profile of [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)]-somatostatin-based radioligands such as [DOTA,1-Nal3]-octreotide (DOTA-NOC), different spacers (X) based on 8-amino-3,6-dioxaoctanoic acid (PEG2), 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG4), N-acetyl glucosamine (GlcNAc), triglycine, beta-alanine, aspartic acid, and lysine were introduced between the chelator DOTA and the peptide NOC. All DOTA-X-NOC conjugates were synthesized by Fmoc solid-phase synthesis. The partition coefficient (log D) at pH = 7.4 indicated that higher hydrophilicity than [111In-DOTA]-NOC was achieved with the introduction of the mentioned spacers, except with triglycine and beta-alanine. The high affinity of [InIII-DOTA]-NOC for human sst2 (hsst2) was preserved with the structural modifications, while an overall drop for hsst3 affinity was observed, except in the case of [InIII-DOTA]-beta-Ala-NOC. The new conjugates preserved the good affinity for hsst5, except for [InIII-DOTA]-Asn(GlcNAc)-NOC, which showed decreased affinity. A significant 1.2-fold improvement in the specific internalization rate in AR4-2J rat pancreatic tumor cells (sst2 receptor expression) at 4 h was achieved with the introduction of Asp as a spacer in the parent compound. In sst3-expressing HEK cells, the specific internalization rate at 4 h for [111In-DOTA]-NOC (13.1% +/- 0.3%) was maintained with [111In-DOTA]-beta-Ala-NOC (14.0% +/- 1.8%), but the remaining derivatives showed <2% specific internalization. Biodistribution studies were performed with Lewis rats bearing the AR4-2J rat pancreatic tumor. In comparison to [111In-DOTA]-NOC (2.96% +/- 0.48% IA/g), the specific uptake in the tumor at 4 h p.i. was significantly improved for the 111In-labeled sugar analogue (4.17% +/- 0.46% IA/g), which among all the new derivatives presented the best tumor-to-kidney ratio (1.9).
Resumo:
Ectopic acromegaly represents less than 1% of the reported cases of acromegaly. Although clinical improvement is common after treatment with somatostatin (SMS) analogs, the biochemical response and tumor size of the growth hormone-releasing hormone (GHRH)-producing tumor and its metastases are less predictable. Subject A 36-year-old male was referred because of a 3-year history of acromegaly related symptoms. He had undergone lung surgery in 1987 for a "benign" carcinoid tumor. Endocrine evaluation confirmed acromegaly Plasma IGF-1: 984 ng/ml (63-380), GH: 49.8 ng/ml (<5). MRI showed a large mass in the left cerebellopontine angle and diffuse pituitary hyperplasia. Pulmonary, liver and bone metastases were shown by chest and abdominal CT scans. Ectopic GHRH secretion was suspected. Methods Measurement of circulating GHRH levels by fluorescence immunoassay levels and immunohistochemical study of the primary lung tumor and metastatic tissue with anti-GHRH and anti-somatostatin receptor type 2 (sst2A) antibodies. Results Basal plasma GHRH: 4654 pg/ml (<100). Pathological study of liver and bone biopsy material and lung tissue removed 19 years earlier was consistent with an atypical carcinoid producing GHRH and exhibiting sst2A receptor expression. Treatment with octreotide LAR 20-40 mg q. month resulted in normalization of plasma IGF-1 levels. Circulating GHRH levels decreased dramatically. The size of the left prepontine cistern mass, with SMS receptors shown by a radiolabeled pentetreotide scan, decreased by 80% after 18 months of therapy. Total regression of pituitary enlargement was also observed. No changes were observed in lung and liver metastases. After 24 months of therapy the patient is asymptomatic and living a full and active life.
Resumo:
BACKGROUND: Transforming growth factors betas (TGF-betas) are implicated in pancreatic tissue repair but their role in acute pancreatitis is not known. To determine whether endogenous TGF-betas modulate the course of caerulein induced acute pancreatitis, caerulein was administered to wild-type (FVB-/-) and transgenic mice that are heterozygous (FVB+/-) for expression of a dominant negative type II TGF-beta receptor. METHODS: After 7 hourly supramaximal injections of caerulein, the pancreas was evaluated histologically and serum was assayed for amylase and lipase levels. Next, the effects of caerulein on amylase secretion were determined in mouse pancreatic acini, and cholecystokinin (CCK) receptor expression was assessed. RESULTS: The normal mouse pancreas was devoid of inflammatory cells whereas the pancreas from transgenic mice contained lymphocytic infiltrates. Caerulein injection in wild-type mice resulted in 6- and 36-fold increases in serum amylase and lipase levels, respectively, increased serum trypsinogen activation peptide (TAP) levels, gross oedema and a marked inflammatory response in the pancreas that consisted mainly of neutrophils and macrophages. By contrast, FVB+/- mice exhibited minimal alterations in response to caerulein with attenuated neutrophil-macrophage infiltrates. Moreover, acini from FVB+/- mice did not exhibit restricted stimulation at high caerulein concentrations, even though CCK receptor mRNA levels were not decreased. CONCLUSION: Our findings indicate that a functional TGF-beta signalling pathway may be required for caerulein to induce acute pancreatitis and for the CCK receptor to induce acinar cell damage at high ligand concentrations. Our results also support the concept that restricted stimulation at high caerulein concentrations contributes to the ability of caerulein to induce acute pancreatitis.
Resumo:
BACKGROUND: We examined whether vascular smooth muscle (VSMC) or endothelial cell (EC) migration from internal mammary artery (MA) differed from VSMC or EC migration from saphenous vein (SV). METHODS AND RESULTS: Migration to PDGF-BB (1-10 ng/ml) was lower in VSMC from MA than SV; however, attachment, movement without chemokine, and chemokinesis were identical. Unlike VSMC, migration of EC was similar in response to several mediators. Expression of PDGF receptor-beta was lower in VSMC from MA than SV, while alpha-receptor expression was higher. PDGF-BB-induced RhoA activity was lower in MA than SV, while basal activity was identical. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced migration of VSMC from MA and SV. Mevalonate and geranylgeranylpyrophosphate rescued inhibition by rosuvastatin. PDGF-BB induced less stress fiber formation in VSMC from MA than SV. A dominant negative RhoA mutant inhibited stress fiber formation to PDGF-BB, while a constitutively active mutant resulted in maximal stress fiber formation in MA and SV. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced stress fiber formation in MA and SV. CONCLUSIONS: VSMC migration to PDGF-BB is lower in MA than SV, which is at least in part related to lower activity of the Rho/ROCK pathway.
Resumo:
The dopamine receptor antagonist metoclopramide (paspertin, primpéran, gastrosil, meclopran, gastro-timelets), used as monotherapy or in combination with an inhibitor of the cyclooxygenase enzyme, affords good results in orthostatic hypotension due to insufficiency of the sympathetic nervous system. The mechanism of action in these cases is unclear but is assumed to be elevation of vascular tone in the splanchnic vessels. A case is discussed which documents the effectiveness of metoclopramide therapy in orthostatic hypotension, even in absence of signs of autonomic dysfunction.
Resumo:
Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.
Resumo:
Platelet reactivity to acute stress is associated with increased cardiovascular disease risk; however, little research exists to provide systematic methodological foundations needed to generate strong longitudinal research designs. Study objectives were: 1) to evaluate whether markers of platelet function increase in response to an acute psychological stress test among older adults, 2) to establish whether reactivity remains robust upon repeated administration (i.e. three occasions approximately 1 year apart), and 3) to evaluate whether two different acute speech stress tasks elicit similar platelet responses. The 149 subjects (mean age 71 years) gave a brief impromptu speech on one of two randomly assigned topics involving interpersonal conflict. Blood samples drawn at baseline and post-speech were assayed using flow cytometry for platelet responses on three outcomes (% aggregates, % P-selectin expression, and % fibrinogen receptor expression). Three-level hierarchical linear modeling analyses revealed significant stress-induced increases in platelet activation on all outcomes (p < 0.001). No significant habituation on any measure was found. Additional reactivity differences were associated with male gender, history of myocardial infarction, and use of aspirin, statins, and antidepressants. The results demonstrate that laboratory acute stress tests continued to produce robust platelet reactivity on three activation markers among older adults over 3 years.
Resumo:
PURPOSE: Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. The authors sought to explore the functional expression of ionotropic (iGluR) and group 3, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degeneration. METHODS: Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degeneration and a sample of human RP. RESULTS: After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, whereas amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the number of bipolar cells expressing functional iGluRs was double that of normal retina. CONCLUSIONS: RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some nonglutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late RP photoreceptor transplantation attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function.
Resumo:
Atherosclerosis is a chronic, complex arterial disease characterized by intimal lipid accumulation and inflammation. A unique lipid-binding molecule, namely cluster of differentiation 1d (CD1d), may impact atherosclerosis. Structurally, CD1d acts as a nonpolymorphic cell-surface receptor, resembling the major histocompatibility complex-I (MHC-I). While MHC-I restricts peptide antigen presentation to T cells, CD1d presents lipid antigens to T cells named CD1d-restrictedd T cells. Although increased expression of CD1d has been found in human plaques, the exact nature of CD1d-recognized lipids in atherosclerosis remains to be determined. Three groups of lipids may undergo oxidation in atherosclerosis producing atherogenic lipids: phospholipids, fatty acids, and cholesterol. The central hypothesis is that CD1d recognizes and present oxidative lipids to activate CD1d-restricted T cells, and trigger proinflammatory signal transduction In the first part of this study, oxidative phospholipids were identified and characterized as potential autoantigen for CD1d-restricted T cells. Derived from phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine by oxidization, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) is commonly found in atherosclerotic plaques. Upon stimulation with PGPC, spleen-derived CD1d-restricted T cells produced higher levels of cytokines and proliferated at higher rates than those without PGPC stimulation. CD1d deficiency compromised the PGPC-triggered T cell activation, suggesting that PGPC may function as a potentially novel autoantigen for T cells in atherosclerosis. In the second part of this study, CD1d-mediated proinflammatory signaling was evaluated in murine models. Enhanced CD1 expression occurred in spleens of db/db mice with hyperlipidemia. Tumor necrosis factor-alpha (TNF-α) was increased in db/db spleen, while TNF-α receptor expression augmented in the db/db murine heart, in comparison with those in normal mice. The nuclear factor-κ B (NF-κB) expression was enhanced in the db/db heart, whereas CD1d-null mice showed lower NF-κB, implying the involvement of CD1d in inflammation of the spleen and heart tissues in the mice with hyperlipidemia. The current study has identified PGPC as a novel lipid antigen recognized by CD1d-restricted T cells in atherosclerosis. The animal study has also provided evidence that CD1d regulates NF-κB-mediated proinflammatory signaling. Hence, CD1d-restricted T cell responses to autolipid antigen and mediated inflammatory signal may represent a new molecular pathway that triggers cardiovascular tissue injury in atherosclerosis and hyperlipidemia.
Resumo:
Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^
Resumo:
Virus-associated pulmonary exacerbations, often associated with rhinoviruses (RVs), contribute to cystic fibrosis (CF) morbidity. Currently, there are only a few therapeutic options to treat virus-induced CF pulmonary exacerbations. The macrolide antibiotic azithromycin has antiviral properties in human bronchial epithelial cells. We investigated the potential of azithromycin to induce antiviral mechanisms in CF bronchial epithelial cells. Primary bronchial epithelial cells from CF and control children were infected with RV after azithromycin pre-treatment. Viral RNA, interferon (IFN), IFN-stimulated gene and pattern recognition receptor expression were measured by real-time quantitative PCR. Live virus shedding was assessed by assaying the 50% tissue culture infective dose. Pro-inflammatory cytokine and IFN-β production were evaluated by ELISA. Cell death was investigated by flow cytometry. RV replication was increased in CF compared with control cells. Azithromycin reduced RV replication seven-fold in CF cells without inducing cell death. Furthermore, azithromycin increased RV-induced pattern recognition receptor, IFN and IFN-stimulated gene mRNA levels. While stimulating antiviral responses, azithromycin did not prevent virus-induced pro-inflammatory responses. Azithromycin pre-treatment reduces RV replication in CF bronchial epithelial cells, possibly through the amplification of the antiviral response mediated by the IFN pathway. Clinical studies are needed to elucidate the potential of azithromycin in the management and prevention of RV-induced CF pulmonary exacerbations.
Resumo:
Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.
Resumo:
T cell development is a multistage process of differentiation that depends on proper thymocyte-thymic epithelial cell (TEC) interactions. Epithelial cells in the thymus are organized in a three-dimensional network that provides support and signals for thymocyte maturation. Concurrently, proper TEC differentiation in the adult thymus relies on thymocyte-derived signals. TECs produce interleukin-7 (IL-7), a non-redundant cytokine that promotes the survival, differentiation, and proliferation of thymocytes. We have identified IL-7 expressing TECs throughout ontogeny and in the adult thymus by in situ hybridization analysis. IL-7 expression is initiated in the thymic fated domain of the thymic primordium by embryonic day 11.5, in a Foxn1 independent pathway. Marked changes occur in the localization and regulation of IL-7 expressing TECs during development. Whereas IL-7 expressing TECs are present throughout the early thymic rudiment, the majority of IL-7 producing TECs are concentrated in the adult thymic medulla. By analyzing mouse strains that sustain blocks at different stages of thymocyte development, we show that IL-7 expression is initiated independently of hematopoietic-derived signals during thymic organogenesis. However, thymocyte-derived signals play an essential role in regulating IL-7 expression in the adult TEC compartment. Furthermore, distinct thymocyte subsets regulate the expression of IL-7 and keratin 5 in adult cortical epithelium. Intraperitoneal injection of Recombination Activating Gene deficient mice (RAG-2−/−) with anti-CD3ϵ monoclonal antibody (mAb) induces CD4− 8− double negative thymocytes to undergo β-selection and differentiate into CD4+8+ cells. Analysis of the thymic stromal compartment reveals that progression through β-selection renders thymocytes competent to alter the pattern of IL-7 expression in the cortical TEC compartment. RAG-2−/− mice do not generate mature T cells and therefore the RAG-2−/− thymus is devoid of organized medullary regions. Histological examination of RAG-2−/− thymus following anti-CD3ϵ stimulation reveals the emergence of mature thymic medullary regions, as assessed by H & E staining and expression of thymic stromal medullary markers. Stromal medullary reorganization occurs in the absence of T cell receptor αβ expression, suggesting that activation of RAG-2−/− thymocytes by CD3ϵ ligation generates thymocyte-derived signals that induce thymic epithelial reorganization, generating a mature medullary compartment. This model provides a tool to assess the mechanisms underlying thymic medullary development. ^
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a member of the TNF superfamily of cytokines that can induce cell death through engagement of cognate death receptors. Unlike other death receptor ligands, it selectively kills tumor cells while sparing normal cells. Preclinical studies in non-human primates have generated much enthusiasm regarding its therapeutic potential. However, many human cancer cell lines exhibit significant resistance to TRAIL-induced apoptosis, and the molecular mechanisms underling this are controversial. Possible explanations are typically cell-type dependent, but include alterations of receptor expression, enhancement of pro-apoptotic intracellular signaling molecules, and reductions in anti-apoptotic proteins. We show here that the proteasome inhibitor bortezomib (Velcade, PS-341) produces synergistic apoptosis in both bladder and prostate cancer cell lines within 4-6 hours when co-treated with recombinant human TRAIL which is associated with accumulation of p21 and cdk1/2 inhibition. Our data suggest that bortezomib's mechanism of action involves a p21-dependent enhancement of caspase maturation. Furthermore, we found enhanced tumor cell death in in vivo models using athymic nude mice. This is associated with increases in caspase-8 and caspase-3 cleavage as well as significant reductions in microvessel density (MVD) and proliferation. Although TRAIL alone had less of an effect, its biological significance as a single agent requires further investigations. Toxicity studies reveal that the combination of bortezomib and rhTRAIL has fatal consequences that can be circumvented by altering treatment schedules. Based on our findings, we conclude that this strategy has significant therapeutic potential as an anti-cancer agent. ^
Resumo:
Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription–PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood–brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.