989 resultados para dissolved organic matter
Resumo:
Three lower Barremian to middle/upper Cenomanian samples from DSDP Hole 549 and three lower Cenomanian to lower Maestrichtian samples from DSDP Hole 550B were investigated by organic geochemical and organic petrographic methods. The samples came from wells drilled in the area of the Goban Spur in the northeastern Atlantic; they represent gray to greenish gray carbonaceous mud or siltstones from the deeper parts of the Cretaceous sequences penetrated and light-colored chalks from the shallower ones. The total amount of organic carbon is below 1% in all samples; it is especially low in the Cenomanian to Maestrichtian chalks. Terrigenous organic matter predominates; only the Barremian sample shows a moderate number of marine phytoclasts. As indicated by several parameters, the maturity of the organic matter is low, corresponding to about 0.4% vitrinite reflectance.
Resumo:
I analyzed Leg 57 sediments organogeochemically and spectroscopically. Organic carbon and extractable organic matter prevail from the Pliocene to the Miocene. Humic acids occur widely from the Pleistocene to the lower Miocene and one portion of the Oligocene. The absence of humic acids in Oligocene and Cretaceous samples suggests that humic acids had changed to kerogen. Visible spectroscopic data reveal that humic acids in this study have a low degree of condensed aromatic-ring system, which is a feature of anaerobic conditions during deposition, and that chlorophyll derivatives that had at first combined with humic acids moved to the solvent- soluble fraction during diagenesis. The elemental compositions of humic acids show high H/C and O/C ratios, which seem appropriate to a stage before transformation to kerogen. The relation between the linewidths and g-values on the electron spin resonance data indicates that the free radicals in humic acids are quite different from those in kerogen. The low spin concentrations of kerogen and the yields of humic acids up to the lower Miocene demonstrate that organic matter in these sediments is immature. The foregoing indicate the necessity to isolate humic acids even in ancient rocks in the study of kerogen.
Resumo:
Detailed petrographical and bulk geochemical investigations of organic matter (OM) have been performed on sediments deposited below or close to upwelling areas offshore Peru (ODP-Leg 112; Sites 679, 681, 688) and Oman (ODP-Leg 117; Sites 720, 723, 724) in order to obtain a quantitative understanding of its accumulation and degradation. Microscopical as well as nanoscopical investigations reveal that the OM in sediments affected by upwelling mechanisms mainly (up to 98%) consists of unstructured (amorphous) organic aggregates without any apparent biological structures. In sediments which are not or to a lesser extent affected by upwelling (Site 720) terrestrial OM predominates. Organic carbon (TOC) contents are highly variable and range between 9.8% in sediments deposited below upwelling cells and 0.2% in sediments outside the upwelling zone. The TOC/sulphur ratios of the sediments scatter widely. The samples from the deep-water locations (Sites 688 and 720), show C/S-ratios of "normal" marine sediments, whereas at the other locations no correlation or even a negative correlation between sulphur and TOC concentration exists. In most of the upwelling-influenced sediments OM contains a significant amount of sulphur. The incorporation of sulphur into the OM followed microbial sulphate reduction and occurred in the upper meters of the sedimentary column. Below, OM is still present in vast amounts and relatively hydrogen-rich, but is nevertheless non-metabolizable and becomes the limiting factor for bacterial sulphate reduction. According to mass balance calculations 90-99% of the OM produced in the photic zone was remineralized and 1-3% was consumed by microbial sulphate reduction. The aerobic and anaerobic processes have greatly affected degradation and conservation of OM.
Resumo:
The wide distribution of sapropelic deposits in the sedimentary cover of the oceans, their Cretaceous age, and their possible oil- and gas-generating characteristics allow us to regard these deposits as a regular global stage in the history of oceanic sedimentation. So, Cretaceous sapropelic deposits are a unique object for study. Cretaceous sapropelic deposits of DSDP Sites 463, 465, and 466, as well as similar sediments of the Atlantic and Indian Oceans, are characterized by enrichment in organic matter, which sometimes reaches 33% (Cape Verde Basin, DSDP Sites 367 and 368). The objective of this study is the elucidation of genesis, paleogeographic environment of sedimentation, and oil-generating potential of Cretaceous sapropelic deposits at these sites. Attention is given to petrographic composition and distribution of the organic matter.
Resumo:
We report the results of downhole stable isotopic (d13Corg [organic carbon] and d15N) and elemental measurements (total organic carbon [TOC], total nitrogen [TN], and carbon/nitrogen [C/N]) of sedimentary organic matter (SOM) along with stable isotopic measurements (d18O and d13C) of left-coiling Neogloboquadrina pachyderma planktonic foraminifers from Ocean Drilling Program Site 1166. TOC and TN measurements indicate a large change from organic-rich preglacial sediments with primary organic matter to organic-poor early glacial and glacial sediments, with mainly recycled organic matter. Results of the stable isotopic measurements of SOM show a range of values that are typical of both marine and terrestrial organic matter, probably reflecting a mixture of the two. However, C/N values are mostly high (>15), suggesting greater input and/or preservation of terrestrial organic matter. Foraminifers are only present in glacial/glaciomarine sediments of latest Pliocene to Pleistocene age at Site 1166 (lithostratigraphic Unit I). The majority of this unit has d13Corg and TOC values that are similar to those of glacial sediments recovered at Site 1167 (lithostratigraphic Unit II) on the slope and may have the same source(s). Although the low resolution of the N. pachyderma (s.) d18O and d13C data set precludes any specific paleoclimatic interpretation, downcore variations in foraminifer d18O and d13C values of 0.5 per mil to 1 per mil amplitude may indicate glacial-interglacial changes in ice volume/temperature in the Prydz Bay region.