967 resultados para cylindrical detonation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two styrene-isoprene-styrene block copolymers Vector 4111 and 4113, exhibiting cylindrical (18 wt % PS) and spherical (16 wt % PS) morphology, respectively, have been examined under uniaxial elongation up to 200% strain. On the basis of stress-strain data, mechanical properties are compared for isotropic and oriented polystyrene domains. The structure at various stages of deformation has been determined from SAXS patterns in three planes and two principal deformation directions with respect to orientation. Samples showed a very high degree of hexagonal packing, resulting in an X-ray pattern taken parallel to the cylinder alignment approaching single crystal ordering. Cylinders were aligned with the closest packed planes parallel to film surface. Particular attention has been paid to a lattice deformation process occurring during the first stretching and relaxation cycle. For a copolymer with oriented cylindrical morphology the deformation was affine up to 120% strain. The microdomain spacing was calculated parallel and perpendicular to the stretching direction. The cylindrical microstructure orientation, quantified by Hermans' orientation factor reduced during elongation of oriented polymer, while the elongation of isotropic sample caused an increase of orientation. Deformation of all studied morphologies was reversible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional shock-reflection test problem in the case of slab, cylindrical, or spherical symmetry is discussed. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankie-Hugoniot shock relations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This includes flow in a duct of variable cross-section, as well as flow with slab, cylindrical or spherical symmetry, as well as the case of an ideal gas, and can be useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The resulting scheme requires an average of the flow variables across the interface between cells, and this average is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual “square root” averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and for a number of equations of state. The results compare favourably with the results from other schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional shock (bore) reflection problem is discussed for the two-dimensional shallow water equations with cylindrical symmetry. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankine-Hugoniot shock relations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional shock-reflection test problem in the case of slab, cylindrical or spherical symmetry is discussed for multi-component flows. The differential equations for a similarity solution are derived and then solved numerically in conjunction with the Rankine-Hugoniot shock relations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This include flow in a duct of variable cross-section as well as flow with cylindrical or spherical symmetry, and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The scheme is applied with success to a problem involving the interaction of converging and diverging cylindrical shocks for four equations of state and to a problem involving the reflection of a converging shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approximate Riemann solver, in a Lagrangian frame of reference, is presented for the compressible flow equations with cylindrical and spherical symmetry, including flow in a duct of variable cross section. The scheme is applied to a cylindrically symmetric problem involving the interaction of shocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes the aqueous solution self-assembly of a series of polystyrene(m)-b-poly(L-lysine)n block copolymers (m = 8-10; n = 10-70). The polymers are prepared by ring-opening polymerization of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride using amine terminated polystyrene macroinitiators, followed by removal of the benzyloxycarbonyl side chain protecting groups. The critical micelle concentration of the block copolymers determined using the pyrene probe technique shows a parabolic dependence on peptide block length exhibiting a maximum at n = approximately 20 (m = 8) or n = approximately 60 (m = 10). The shape and size of the aggregates has been studied by dynamic and static light scattering, small-angle neutron scattering (SANS), and analytical ultracentrifugation (AUC). Surprisingly, Holtzer and Kratky analysis of the static light scattering results indicates the presence of nonspherical, presumably cylindrical objects independent of the poly(L-lysine)n block length. This is supported by SANS data, which can be fitted well by assuming cylindrical scattering objects. AUC analysis allows the molecular weight of the aggregates to be estimated as several million g/mol, corresponding to aggregation numbers of several 10s to 100s. These aggregation numbers agree with those that can be estimated from the length and diameter of the cylinders obtained from the scattering results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight M-n = 29,700g mol(-1) (M-PS = 9300 g mol(-1) M-PMMA = 20,100 g mol(-1), PD = 1.15, chi(PS) = 0.323, chi(PMMA) = 0.677) and M-n = 63,900 g mol(-1) (M-PS = 50,500 g mol(-1), M-PMMA = 13,400 g mol(-1), PD = 1.18, chi(PS) = 0.790, chi(PMMA) = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 degrees C for 24 h led to a change in surface structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-consistent field theory (SCFT) introduced by Helfand for diblock copolymer melts is expected to converge to the strong-segregation theory (SST) of Semenov in the asymptotic limit, $\chi N \rightarrow \infty$. However, past extrapolations of the lamellar/cylinder and cylinder/sphere phase boundaries, within the standard unit-cell approximation, have cast some doubts on whether or not this is actually true. Here we push the comparison further by extending the SCFT calculations to $\chi N = 512,000$, by accounting for exclusion zones in the coronae of the cylindrical and spherical unit cells, and by examining finite-segregation corrections to SST. In doing so, we provide the first compelling evidence that SCFT does indeed reduce to SST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of scattering of time harmonic acoustic waves by an unbounded sound soft surface which is assumed to lie within a finite distance of some plane. The paper is concerned with the study of an equivalent variational formulation of this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this variational formulation in an energy space with weights which extends previous results in the unweighted setting [S. Chandler-Wilde and P. Monk, SIAM J. Math. Anal., 37 (2005), pp. 598–618] to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-dimensional case, our approach covers the problem of plane wave incidence, whereas in the three-dimensional case, incident spherical and cylindrical waves can be treated. As a further application of our results, we analyze a finite section type approximation, whereby the variational problem posed on an infinite layer is approximated by a variational problem on a bounded region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various methods of assessment have been applied to the One Dimensional Time to Explosion (ODTX) apparatus and experiments with the aim of allowing an estimate of the comparative violence of the explosion event to be made. Non-mechanical methods used were a simple visual inspection, measuring the increase in the void volume of the anvils following an explosion and measuring the velocity of the sound produced by the explosion over 1 metre. Mechanical methods used included monitoring piezo-electric devices inserted in the frame of the machine and measuring the rotational velocity of a rotating bar placed on the top of the anvils after it had been displaced by the shock wave. This last method, which resembles original Hopkinson Bar experiments, seemed the easiest to apply and analyse, giving relative rankings of violence and the possibility of the calculation of a “detonation” pressure.