943 resultados para cutting fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium is not a physiological component of the breast but has been measured recently in human breast tissues and breast cyst fluids at levels above those found in blood serum or milk. Since the presence of aluminium can lead to iron dyshomeostasis, levels of aluminium and iron-binding proteins (ferritin, transferrin) were measured in nipple aspirate fluid (NAF), a fluid present in the breast duct tree and mirroring the breast microenvironment. NAFs were collected noninvasively from healthy women (NoCancer; n = 16) and breast cancer-affected women (Cancer; n = 19), and compared with levels in serum (n = 15) and milk (n = 45) from healthy subjects. The mean level of aluminium, measured by ICP-mass spectrometry, was significantly higher in Cancer NAF (268.4 ± 28.1 μg l−1; n = 19) than in NoCancer NAF (131.3 ± 9.6 μg l−1; n = 16; P < 0.0001). The mean level of ferritin, measured through immunoassay, was also found to be higher in Cancer NAF (280.0 ± 32.3 μg l−1) than in NoCancer NAF (55.5 ± 7.2 μg l−1), and furthermore, a positive correlation was found between levels of aluminium and ferritin in the Cancer NAF (correlation coefficient R = 0.94, P < 0.001). These results may suggest a role for raised levels of aluminium and modulation of proteins that regulate iron homeostasis as biomarkers for identification of women at higher risk of developing breast cancer. The reasons for the high levels of aluminium in NAF remain unknown but possibilities include either exposure to aluminium-based antiperspirant salts in the adjacent underarm area and/or preferential accumulation of aluminium by breast tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response surface methodology was used to study the effect of temperature, cutting time, and calcium chloride addition level on curd moisture content, whey fat losses, and curd yield. Coagulation and syneresis were continuously monitored using 2 optical sensors detecting light backscatter. The effect of the factors on the sensors’ response was also examined. Retention of fat during cheese making was found to be a function of cutting time and temperature, whereas curd yield was found to be a function of those 2 factors and the level of calcium chloride addition. The main effect of temperature on curd moisture was to increase the rate at which whey was expelled. Temperature and calcium chloride addition level were also found to affect the light backscatter profile during coagulation whereas the light backscatter profile during syneresis was a function of temperature and cutting time. The results of this study suggest that there is an optimum firmness at which the gel should be cut to achieve maximum retention of fat and an optimum curd moisture content to maximize product yield and quality. It was determined that to maximize curd yield and quality, it is necessary to maximize firmness while avoiding rapid coarsening of the gel network and microsyneresis. These results could contribute to the optimization of the cheese-making process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An NIR reflectance sensor, with a large field of view and a fibre-optic connection to a spectrometer for measuring light backscatter at 980 nm, was used to monitor the syneresis process online during cheese-making with the goal of predicting syneresis indices (curd moisture content, yield of whey and fat losses to whey) over a range of curd cutting programmes and stirring speeds. A series of trials were carried out in an 11 L cheese vat using recombined whole milk. A factorial experimental design consisting of three curd stirring speeds and three cutting programmes, was undertaken. Milk was coagulated under constant conditions and the casein gel was cut when the elastic modulus reached 35 Pa. Among the syneresis indices investigated, the most accurate and most parsimonious multivariate model developed was for predicting yield of whey involving three terms, namely light backscatter, milk fat content and cutting intensity (R2 = 0.83, SEy = 6.13 g/100 g), while the best simple model also predicted this syneresis index using the light backscatter alone (R2 = 0.80, SEy = 6.53 g/100 g). In this model the main predictor was the light backscatter response from the NIR light back scatter sensor. The sensor also predicted curd moisture with a similar accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lorenz’s theory of available p otential energy (APE) remains the main framework for studying the atmospheric and oceanic energy cycles. Because the APE generation rate is the volume integral of a thermodynamic efficiency times the local diabatic heating/cooling rate, APE theory is often regarded as an extension of the theory of heat engines. Available energetics in classical thermodynamics, however, usually relies on the concept of exergy, and is usually measured relative to a reference state maximising entropy at constant energy, whereas APE’s reference state minimises p otential energy at constant entropy. This review seeks to shed light on the two concepts; it covers local formulations of available energetics, alternative views of the dynamics/thermodynamics coupling, APE theory and the second law, APE production/dissipation, extensions to binary fluids, mean/eddy decomp ositions, APE in incompressible fluids, APE and irreversible turbulent mixing, and the role of mechanical forcing on APE production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A boundary integral equation is described for the prediction of acoustic propagation from a monofrequency coherent line source in a cutting with impedance boundary conditions onto surrounding flat impedance ground. The problem is stated as a boundary value problem for the Helmholtz equation and is subsequently reformulated as a system of boundary integral equations via Green's theorem. It is shown that the integral equation formulation has a unique solution at all wavenumbers. The numerical solution of the coupled boundary integral equations by a simple boundary element method is then described. The convergence of the numerical scheme is demonstrated experimentally. Predictions of A-weighted excess attenuation for a traffic noise spectrum are made illustrating the effects of varying the depth of the cutting and the absorbency of the surrounding ground surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In traditional and geophysical fluid dynamics, it is common to describe stratified turbulent fluid flows with low Mach number and small relative density variations by means of the incompressible Boussinesq approximation. Although such an approximation is often interpreted as decoupling the thermodynamics from the dynamics, this paper reviews recent results and derive new ones that show that the reality is actually more subtle and complex when diabatic effects and a nonlinear equation of state are retained. Such an analysis reveals indeed: (1) that the compressible work of expansion/contraction remains of comparable importance as the mechanical energy conversions in contrast to what is usually assumed; (2) in a Boussinesq fluid, compressible effects occur in the guise of changes in gravitational potential energy due to density changes. This makes it possible to construct a fully consistent description of the thermodynamics of incompressible fluids for an arbitrary nonlinear equation of state; (3) rigorous methods based on using the available potential energy and potential enthalpy budgets can be used to quantify the work of expansion/contraction B in steady and transient flows, which reveals that B is predominantly controlled by molecular diffusive effects, and act as a significant sink of kinetic energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct comparative study on the creep-recovery behavior of conventional MR fluids is carried out using magnetorheometry and particle-level simulations. Two particle concentrations are investigated (ϕ=0.05 and 0.30) at two different magnetic field strengths (53 kA•m-1 and 173 kA•m-1) in order to match the yield stresses developed in both systems for easier comparison. Simulations are mostly started with random initial structures with some additional tests of using preassembled single chains in the low concentration case. Experimental and simulation data are in good qualitative agreement. The results demonstrate three regions in the creep curves: i) In the initial viscoelastic region, the chain-like (at ϕ=0.05) or percolated three-dimensional network (at ϕ=0.30) structures fill up the gap and the average cluster size remains constant; ii) Above a critical strain of 10 %, in the retardation region, these structures begin to break and rearrange under shear. At large enough imposed stress values, they transform into thin sheet-like or thick lamellar structures, depending on the particle concentration; iii) Finally in the case of larger strain values either the viscosity diverges (at low stress values) or reaches a constant low value (at high stress values), showing a clear bifurcation behavior. For stresses below the bifurcation point the MR fluid is capable to recover the strain by a certain fraction. However, no recovery is observed for large stress values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulated intestinal fluids (SIFs) used to assay the solubility of orally administered drugs are typically based on a single bile salt; sodium taurocholate (STC). The aim of this study was to develop mimetic intestinal fluids with a closer similarity to physiological fluids than those reported to date by developing a mixed bile salt (MBS) system (STC, sodium glycodeoxycholate, sodium deoxycholate; 60:39:1) with different concentrations of lecithin, the preponderant intestinal phospholipid. Hydrocortisone and progesterone were used as model drugs to evaluate systematically the influence of SIF composition on solubility. Increasing total bile salt concentration from 0 to 30 mM increased hydrocortisone and progesterone solubility by 2- and ∼25-fold, respectively. Accordingly, higher solubilities were measured in the fed-state compared to the fasted-state SIFs. Progesterone showed the greatest increases in solubility in STC and MBS systems (2-7-fold) compared to hydrocortisone (no significant change; P>0.05) as lecithin concentration was increased. Overall, MBS systems gave similar solubility profiles to STC. In conclusion, the addenda of MBS and lecithin were found to be secondary to the influence of BS concentration. These data provide a foundation for the design of more bio-similar media for pivotal decision-guiding assays in drug development and quality control settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most in vitro studies of oral drug permeability, little attempt is made to reproduce the gastrointestinal lumenal environment. The aim of this study was to evaluate the compatibility of simulated intestinal fluid (SIF) solutions with Caco-2 cell monolayers and Ussing chamber-mounted rat ileum under standard permeability experiment protocols. In preliminary experiments, fasted-state simulated intestinal fluid (FaSSIF) and fed-state simulated intestinal fluid (FeSSIF) solutions based on the dissolution medium formulae of Dressman and co-workers (1998) were modified for compatibility with Caco-2 cells to produce FaS-SIF and FeSSIF "transport" solutions for use with in vitro permeability models. For Caco-2 cells exposed to FaSSIF and FESSIF transport solutions, the transepithelial electrical resistance was maintained for over 4 h and mannitol permeability was equivalent to that in control (Hank's Balanced Salt Solution-treated) cell layers. Scanning electron microscopy revealed that microvilli generally maintained a normal distribution, although some shortening of microvilli and occasional small areas of denudation were observed. For rat ileum in the Ussing chambers, the potential difference (PD) collapsed to zero over 120 min when exposed to the FaSSIF transport solution and an even faster collapse of the PD was observed when the FeSSIF transport solution was used. Electron micrographs revealed erosion of the villi tips and substantial denudation of the microvilli after exposure of ileal tissue to FaSSIF and FeSSIF solutions, and permeability to mannitol was increased by almost two-fold. This study indicated that FaSSIF and FeSSIF transport solutions can be used with Caco-2 monolayers to evaluate drug permeability, but rat ileum in Ussing chambers is adversely affected by these solutions. Metoprolol permeability in Caco-2 experiments was reduced by 33% using the FaSSIF and 75% using the FeSSIF compared to permeability measured using HBSS. This illustrates that using physiological solutions can influence permeability measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the equilibrium properties of magnetic dipolar (ferro-) fluids and discuss finite-size effects originating from the use of different boundary conditions in computer simulations. Both periodic boundary conditions and a finite spherical box are studied. We demonstrate that periodic boundary conditions and subsequent use of Ewald sum to account for the long-range dipolar interactions lead to a much faster convergence (in terms of the number of investigated dipolar particles) of the magnetization curve and the initial susceptibility to their thermodynamic limits. Another unwanted effect of the simulations in a finite spherical box geometry is a considerable sensitivity to the container size. We further investigate the influence of the surface term in the Ewald sum-that is, due to the surrounding continuum with magnetic permeability mu(BC)-on the convergence properties of our observables and on the final results. The two different ways of evaluating the initial susceptibility, i.e., (1) by the magnetization response of the system to an applied field and (2) by the zero-field fluctuation of the mean-square dipole moment of the system, are compared in terms of speed and accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computer simulation method has been used to study the structural formation and transition of electro-magneto-rheological (EMR) fluids under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into two-dimensional close-packed layer structures parallel to both fields. The layers then combine together to form thicker sheet-like structures, which finally relax into three-dimensional close-packed structures with the help of the thermal fluctuations. On the other hand, if the electric field is applied firstly to induce the body-centered tetragonal (BCT) columns in the system, and then the magnetic field is applied in the perpendicular direction. the BCT to face-centered cubic (FCC) structure transition is observed in very short time. Following that. the structure keeps on evolving due to the demagnetization effect and finally form the three-dimensional close-packed structures.