978 resultados para coral bleaching
Resumo:
Statement of the Problem: The effectiveness of low-intensity red laser for activating a bleaching gel and its effect in pulp temperature was not investigated in dental literature. Purpose: The objective of this study was to assess the effectiveness of low-intensity red laser for activating a bleaching gel, as well as its effect in temperature of the bleaching gel and the dental pulp. Materials and Methods: Forty extracted bovine teeth were immersed in a solution of coffee 14 days for darkening. The initial colors were recorded by spectrophotometric analysis. The specimens were randomly distributed into two groups (N = 20): the control, which did not receive light and the experimental group that received light from an appliance fitted with three red light-emitting laser diodes (? = 660 nm). A green-colored, 35% H2O2based bleaching gel was applied for 30 minutes, and changed three times. After bleaching, the colors were again measured to obtain the L*a*b* values. Color variation was calculated (?E) and the data submitted to the non-paired t-test (5%). To assess temperature, 10 human incisors were prepared, in which one thermocouple was placed on the bleaching gel applied on the surface of the teeth and another inside the pulp chamber. Results: There was a significant difference between the groups (p = 0.016), and the experimental group presented a significantly higher mean variation (7.21 +/- 2.76) in comparison with the control group (5.37 +/- 1.76). There was an increase in pulp temperature, but it was not sufficient to cause damage to the pulp. Conclusion: Bleaching gel activation with low-intensity red laser was capable of increasing the effectiveness of bleaching treatment and did not increase pulp temperature to levels deleterious to the pulp. CLINICAL SIGNIFICANCE The application of a low-intensity red laser was effective for activating a bleaching gel with green dye, without any deleterious increases in pulpal temperature. (J Esthet Restor Dent 24:126134, 2012)
Resumo:
The aim of this study was to assess the influence of manganese gluconate, a chemical activator of bleaching agents, at a concentration of 0.01% on the efficiency of a 10% carbamide peroxide-based bleaching agent. Forty bovine incisors were immersed in a 25% instant coffee solution for seven days and randomly divided into two groups. Group 1 was the control group and consisted of 10% carbamide peroxide-based bleaching gel only. Group 2 consisted of 10% carbamide peroxide-based bleaching gel and 0.01% manganese gluconate. Three readings of color were taken using the Vita Easy-shade spectrophotometer: the initial reading, a reading at seven days, and a reading at 14 days. Total color variation was calculated by Delta E*Lab. Data were submitted to the statistical t-test (5%), which showed that after seven days group 2 had a significant increase in the degree of tooth bleaching compared with group 1. The mean values (+/-SD) were 16.33 (+/-3.95) for group 1 and 19.29 (+/-4.97) for group 2. However, the results for group 1 and group 2 were similar after 14 days. Adding 0.01% manganese gluconate to 10% carbamide peroxide bleaching gel increased the degree of tooth bleaching after a seven-day treatment and did not influence the resulting shade after 14 days.
Resumo:
Purpose: This study compared five types of chemical catalyzing agents added to 35% hydrogen peroxide gel, with regard to their capacity of intensifying in-office dental bleaching results.Methods: One-hundred and twenty bovine incisors were used, of which the crowns and roots were cut in the incisor-apical direction, to acquire the dimensions of a human central incisor. The specimens were sectioned in the mesiodistal direction by means of two longitudinal cuts, the lingual halves being discarded. The vestibular halves received prophylaxis with a bicarbonate jet, ultrasound cleaning and acid etching on the dentinal portion. Next, the specimens were stored in receptacles containing a 25% instant coffee solution for two weeks. After the darkening period, initial measurement of the shade obtained was taken with the Easy Shade appliance, which allowed it to be quantified by the CIELab* method. The samples were divided into six groups, corresponding to the chemical activator used: a) none (CON); b) ferric chloride (CF); c) ferrous sulphate (SF); d) manganese gluconate (GM); e) manganese chloride (CM); f) mulberry root extract (RA). Each group received three 10-minute applications of the gels containing the respective activating agents. Next, a new shade measurement was made.Results: The Analysis of Variance and Tukey tests (alpha=5%) showed statistically significant differences for the shade perception values (p=0.002). Groups GM, CM and RA showed significantly higher means than the control group.Conclusion: The presence of some chemical activators is capable of resulting in a significant increase in tooth shade variation.
Resumo:
Objective. The aim of this study was to assess the enamel microhardness treated with three in-office bleaching agents, containing 35% hydrogen peroxide with different acidity. Materials and methods. Bovine incisors were divided into three groups that received the following bleaching agents: Whiteness HP, Total Bleach and Opalescence Xtra. Three gel applications/10-min each, totaling 30-min of bleaching treatment, were made on the teeth and activated with a blue LED (1000 mW/470 nm) combined to a LASER (120 mW/795 nm) device (Easy Bleach-Clean Line). Vickers hardness (VH) was evaluated at baseline and after the bleaching procedure. The values of Hardness loss [HNL] (% reduction) were calculated. The two-sample t-test was used for comparison of the HNL of the three bleaching products (5% level of significance). Results. The Opalescence Xtra, which had the lowest pH value (pH = 4.30), showed a significant increase of HNL when compared with Total Bleach bleaching agent, which had the highest pH value (pH = 6.62). Conclusions. The 35% hydrogen peroxide bleaching agents resulted in a reduction in surface enamel microhardness and bleaching with the most acid agent resulted in a significant enamel hardness loss compared to the less acid agent (4.30 vs 6.62). Strategies proposed to reduce the enamel loss after bleaching treatment may include the use of daily fluoride therapy, mouth rinsing (fluoride, milk and sodium bicarbonate solution), fluoride/bicarbonate dentifrices without abrasives, do not toothbrush immediately after bleaching, fluorides and calcium add to bleaching agents.
Resumo:
Purpose: To evaluate the microhardness of enamel treated with two different 10% carbamide peroxide bleaching materials at different time intervals. Materials and Methods: Two bleaching agents were analyzed: Opalescence (OPA) and Rembrandt (REM). The control group (CON) consisted of dental fragments maintained in artificial saliva. Bleaching was accomplished for 8 hrs per day and stored during the remaining time in an individual recipient with artificial saliva. Enamel microhardness testing was performed before the initial exposure to the treatments and after 1, 7, 14, 21, 28, 35 and 42 days. Results: the ANOVA, followed by the Bartlet and Tukey tests, showed significant differences for treatments (P < 0.00001) from day 7-day 42. From the 7th to the 14th day, OPA presented an increase of enamel microhardness over time while REM presented a decrease of microhardness. Statistical differences were not found between REM and the control group (OPA > CON = REM). From the 21st-35th day, enamel fragments bleached with OPA and REM presented a decrease of microhardness. Statistical differences of microhardness were verified among all the treatments (OPA > CON > REM). on the day 42, statistical differences were not found between OPA and the control group, but they were found between REM and the control group (OPA = CON > REM). The polynomial regression showed an increase of microhardness for OPA until the 21st day, followed by a decrease of microhardness up to the 42nd day. A decrease of microhardness for REM was verified. There were alterations in enamel microhardness as a function of bleaching time when using the two different 10% carbamide peroxide whiteners. Over a 42-day treatment time, bleaching with REM agent caused a decrease in enamel microhardness. The OPA agent initially increased the microhardness, then returned to the control level. Different bleaching materials with the same concentration of carbamide peroxide have different effects on the enamel.
Resumo:
Discoloration of non-vital teeth is an esthetic deficiency frequently requiring bleaching treatment. The purpose of this study was to evaluate in vitro the cervical base efficacy in order to prevent or to minimize the leakage along the root canal filling and into the dentinal tubules. Thirty-eight extracted single-root human teeth were used, which were biomechanically prepared, filled, and divided into three experimental groups: G1, a cervical base was applied (3 mm of thickness) below the cemento-enamel junction, with resin-modified glass-ionomer cement (Vitremer); G2, the base was done with glass-ionomer cement (Vidrion R); and G3 (Control), did not receive any material as base. A mixture of sodium perborate and hydrogen peroxide 30% was placed inside the pulp chamber for 3 days, and the access opening was sealed with Cimpat. This procedure was repeated thrice. Soon after this, a paste of calcium hydroxide was inserted into the pulp chamber for 14 days. All teeth were covered with two layers of sticky wax, except the access opening, and immersed in blue India Ink for 5 days. The results did not show statistically significant differences between the three groups concerning the leakage inside the dentinal tubules. Regarding the apical direction, a statistical difference (ANOVA P < 0.05) was observed among the experimental group G1 and control group G3. No statistically significant difference was observed between G2 and G3 groups. Therefore, the placement of a cervical base before internal bleaching procedures is still recommended.