1000 resultados para confusion layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the onset of magnetoconvection between two infinite horizontal planes subject to a vertical magnetic field aligned with background rotation. In order to gain insight into the convection taking place in the Earth's tangent cylinder, we target regimes of asymptotically strong rotation. The critical Rayleigh number Ra-c and critical wavenumber a(c) are computed numerically by solving the linear stability problem in a systematic way, with either stress-free or no-slip kinematic boundary conditions. A parametric study is conducted, varying the Ekman number E (ratio of viscous to Coriolis forces) and the Elsasser number. (ratio of the Lorentz force to the Coriolis force). E is varied from 10(-9) to 10(-2) and. from 10(-3) to 1. For a wide range of thermal and magnetic Prandtl numbers, our results verify and confirm previous experimental and theoretical results showing the existence of two distinct unstable modes at low values of E-one being controlled by the magnetic field, the other being controlled by viscosity (often called the viscous mode). It is shown that oscillatory onset does not occur in the range of parameters we are interested in. Asymptotic scalings for the onset of these modes are numerically confirmed and their domain of validity is precisely quantified. We show that with no-slip boundary conditions, the asymptotic behavior is reached for E < 10(-6) and establish a map in the (E, Lambda) plane. We distinguish regions where convection sets in either through the magnetic mode or through the viscous mode. Our analysis gives the regime in which the transition between magnetic and viscous modes may be observed. We also show that within the asymptotic regime, the role played by the kinematic boundary conditions is minimal. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition induced by an isolated streamwise vortex embedded in a flat plate boundary layer was studied experimentally. The vortex was created by a gentle hill with a Gaussian profile that spanned on half of the width of a flat plate mounted in a low turbulence wind tunnel. PIV and hot-wire anemometry data were taken. Transition occurs as a non-inclined shear layer breaks up into a sequence of vortices, close to the boundary layer edge. The passing frequency of these vortices scales with square of the freestream velocity, similar to that in single-roughness induced transition. Quadrant analysis of streamwise and wall-normal velocity fluctuations show large ejection events in the outer layer. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the dynamics of photoinduced carriers in a free-standing MoS2 laminate consisting of a few layers (1-6 layers) using time-resolved optical pump-terahertz probe spectroscopy. Upon photoexcitation with the 800 nm pump pulse, the terahertz conductivity increases due to absorption by the photoinduced charge carriers. The relaxation of the non-equilibrium carriers shows fast as well as slow decay channels, analyzed using a rate equation model incorporating defect-assisted Auger scattering of photoexcited electrons, holes, and excitons. The fast relaxation time occurs due to the capture of electrons and holes by defects via Auger processes, resulting in nonradiative recombination. The slower relaxation arises since the excitons are bound to the defects, preventing the defect-assisted Auger recombination of the electrons and the holes. Our results provide a comprehensive understanding of the non-equilibrium carrier kinetics in a system of unscreened Coulomb interactions, where defect-assisted Auger processes dominate and should be applicable to other 2D systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer MoxW1-xS2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi's golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in MoxW1-xS2. While impurity scattering limits the mobility for low carrier densities (<2-4x10(12) cm(-2)), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in MoxW1-xS2. The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in MoxW1-xS2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS2 andWS(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer MoxW1-xS2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi's golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in MoxW1-xS2. While impurity scattering limits the mobility for low carrier densities (<2-4x10(12) cm(-2)), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in MoxW1-xS2. The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in MoxW1-xS2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS2 andWS(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient buffer layer scheme has been designed to address the issue of curvature management during metalorganic chemical vapour deposition growth of GaN on Si (111) substrate. This is necessary to prevent cracking of the grown layer during post-growth cooling down from growth temperature to room temperature and to achieve an allowable bow (<40 m) in the wafer for carrying out lithographic processes. To meet both these ends simultaneously, the stress evolution in the buffer layers was observed carefully. The reduction in precursor flow during the buffer layer growth provided better control over curvature evolution in the growing buffer layers. This has enabled the growth of a suitable high electron mobility transistor (HEMT) stack on 2'' Si (111) substrate of 300 m thickness with a bow as low as 11.4 m, having a two-dimensional electron gas (2DEG) of mobility, carrier concentration, and sheet resistance values 1510 cm(2)/V-s, 0.96 x 10(13)/cm(2), and 444 /, respectively. Another variation of similar technique resulted in a bow of 23.4 m with 2DEG mobility, carrier concentration, and sheet resistance values 1960 cm(2)/V-s, 0.98 x 10(13)/cm(2), and 325 /, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three mechanisms operate during wear of materials. These mechanisms include the Strain Rate Response (SRR - effect of strain rate on plastic deformation), Tribo-Chemical Reactions (TCR) and formation of Mechanically Mixed Layers (MML). The present work investigates the effect of these three in context of the formation of MML. For this wear experiments are done on a pin-on-disc machine using Ti64 as the pin and SS316L as the disc. It is seen that apart from the speed and load, which control the SRR and TCR, the diameter of the pin controls the formation of MML, especially at higher speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An elasto-plastic finite element method is developed to predict the residual stresses of thermal spraying coatings with functionally graded material layer. In numerical simulations, temperature sensitivity of various material constants is included and mix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at free-stream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibilty effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely to occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, a theoretical model is studied on the flow in the liquid annular film, which is ejected from a vessel with relatively higher temperature and painted on the moving solid fiber. A temperature gradient, driving a thermocapillary flow, is formed on the free surface because of the heat transfer from the liquid with relatively higher temperature to the environmental gas with relatively lower temperature. The thermocapillary flow may change the radii profile of the liquid film. This process analyzed is based on the approximations of lubrication theory and perturbation theory, and the equation of the liquid layer radii and the process of thermal hydrodynamics in the liquid layer are solved for a temperature distribution on the solid fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted to investigate the ultrafine-grained (UFG) microstructures in the surface layer of an aluminum alloy 7075 heavily worked by ultrasonic shot peening. Conventional and high-resolution electron microscopy was performed at various depths of the deformed layer. Results showed that UFG structures were introdued into the surface layer of 62 μm thick. With increasing strain, the various microstructural features, e.g., the dislocation emission source, elongated microbands, dislocation cells, dislocation cell blocks, equiaxed submicro-, and nano-crystal grains etc., were successively produced. The grain subdivision into the subgrains was found to be the main mechanism responsible for grain refinement. The simultaneous evolution of high boundary misorientations was ascribed to the subgrain boundary rotation for accommodating further strains. Formed microstructures were highly nonequilibratory.  2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach number Mc = 0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of Lambda-vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.