860 resultados para conceptual data modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present set of studies was to explore primary school children’s Spontaneous Focusing On quantitative Relations (SFOR) and its role in the development of rational number conceptual knowledge. The specific goals were to determine if it was possible to identify a spontaneous quantitative focusing tendency that indexes children’s tendency to recognize and utilize quantitative relations in non-explicitly mathematical situations and to determine if this tendency has an impact on the development of rational number conceptual knowledge in late primary school. To this end, we report on six original empirical studies that measure SFOR in children ages five to thirteen years and the development of rational number conceptual knowledge in ten- to thirteen-year-olds. SFOR measures were developed to determine if there are substantial differences in SFOR that are not explained by the ability to use quantitative relations. A measure of children’s conceptual knowledge of the magnitude representations of rational numbers and the density of rational numbers is utilized to capture the process of conceptual change with rational numbers in late primary school students. Finally, SFOR tendency was examined in relation to the development of rational number conceptual knowledge in these students. Study I concerned the first attempts to measure individual differences in children’s spontaneous recognition and use of quantitative relations in 86 Finnish children from the ages of five to seven years. Results revealed that there were substantial inter-individual differences in the spontaneous recognition and use of quantitative relations in these tasks. This was particularly true for the oldest group of participants, who were in grade one (roughly seven years old). However, the study did not control for ability to solve the tasks using quantitative relations, so it was not clear if these differences were due to ability or SFOR. Study II more deeply investigated the nature of the two tasks reported in Study I, through the use of a stimulated-recall procedure examining children’s verbalizations of how they interpreted the tasks. Results reveal that participants were able to verbalize reasoning about their quantitative relational responses, but not their responses based on exact number. Furthermore, participants’ non-mathematical responses revealed a variety of other aspects, beyond quantitative relations and exact number, which participants focused on in completing the tasks. These results suggest that exact number may be more easily perceived than quantitative relations. As well, these tasks were revealed to contain both mathematical and non-mathematical aspects which were interpreted by the participants as relevant. Study III investigated individual differences in SFOR 84 children, ages five to nine, from the US and is the first to report on the connection between SFOR and other mathematical abilities. The cross-sectional data revealed that there were individual differences in SFOR. Importantly, these differences were not entirely explained by the ability to solve the tasks using quantitative relations, suggesting that SFOR is partially independent from the ability to use quantitative relations. In other words, the lack of use of quantitative relations on the SFOR tasks was not solely due to participants being unable to solve the tasks using quantitative relations, but due to a lack of the spontaneous attention to the quantitative relations in the tasks. Furthermore, SFOR tendency was found to be related to arithmetic fluency among these participants. This is the first evidence to suggest that SFOR may be a partially distinct aspect of children’s existing mathematical competences. Study IV presented a follow-up study of the first graders who participated in Studies I and II, examining SFOR tendency as a predictor of their conceptual knowledge of fraction magnitudes in fourth grade. Results revealed that first graders’ SFOR tendency was a unique predictor of fraction conceptual knowledge in fourth grade, even after controlling for general mathematical skills. These results are the first to suggest that SFOR tendency may play a role in the development of rational number conceptual knowledge. Study V presents a longitudinal study of the development of 263 Finnish students’ rational number conceptual knowledge over a one year period. During this time participants completed a measure of conceptual knowledge of the magnitude representations and the density of rational numbers at three time points. First, a Latent Profile Analysis indicated that a four-class model, differentiating between those participants with high magnitude comparison and density knowledge, was the most appropriate. A Latent Transition Analysis reveal that few students display sustained conceptual change with density concepts, though conceptual change with magnitude representations is present in this group. Overall, this study indicated that there were severe deficiencies in conceptual knowledge of rational numbers, especially concepts of density. The longitudinal Study VI presented a synthesis of the previous studies in order to specifically detail the role of SFOR tendency in the development of rational number conceptual knowledge. Thus, the same participants from Study V completed a measure of SFOR, along with the rational number test, including a fourth time point. Results reveal that SFOR tendency was a predictor of rational number conceptual knowledge after two school years, even after taking into consideration prior rational number knowledge (through the use of residualized SFOR scores), arithmetic fluency, and non-verbal intelligence. Furthermore, those participants with higher-than-expected SFOR scores improved significantly more on magnitude representation and density concepts over the four time points. These results indicate that SFOR tendency is a strong predictor of rational number conceptual development in late primary school children. The results of the six studies reveal that within children’s existing mathematical competences there can be identified a spontaneous quantitative focusing tendency named spontaneous focusing on quantitative relations. Furthermore, this tendency is found to play a role in the development of rational number conceptual knowledge in primary school children. Results suggest that conceptual change with the magnitude representations and density of rational numbers is rare among this group of students. However, those children who are more likely to notice and use quantitative relations in situations that are not explicitly mathematical seem to have an advantage in the development of rational number conceptual knowledge. It may be that these students gain quantitative more and qualitatively better self-initiated deliberate practice with quantitative relations in everyday situations due to an increased SFOR tendency. This suggests that it may be important to promote this type of mathematical activity in teaching rational numbers. Furthermore, these results suggest that there may be a series of spontaneous quantitative focusing tendencies that have an impact on mathematical development throughout the learning trajectory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the doctoral dissertation, low-voltage direct current (LVDC) distribution system stability, supply security and power quality are evaluated by computational modelling and measurements on an LVDC research platform. Computational models for the LVDC network analysis are developed. Time-domain simulation models are implemented in the time-domain simulation environment PSCAD/EMTDC. The PSCAD/EMTDC models of the LVDC network are applied to the transient behaviour and power quality studies. The LVDC network power loss model is developed in a MATLAB environment and is capable of fast estimation of the network and component power losses. The model integrates analytical equations that describe the power loss mechanism of the network components with power flow calculations. For an LVDC network research platform, a monitoring and control software solution is developed. The solution is used to deliver measurement data for verification of the developed models and analysis of the modelling results. In the work, the power loss mechanism of the LVDC network components and its main dependencies are described. Energy loss distribution of the LVDC network components is presented. Power quality measurements and current spectra are provided and harmonic pollution on the DC network is analysed. The transient behaviour of the network is verified through time-domain simulations. DC capacitor guidelines for an LVDC power distribution network are introduced. The power loss analysis results show that one of the main optimisation targets for an LVDC power distribution network should be reduction of the no-load losses and efficiency improvement of converters at partial loads. Low-frequency spectra of the network voltages and currents are shown, and harmonic propagation is analysed. Power quality in the LVDC network point of common coupling (PCC) is discussed. Power quality standard requirements are shown to be met by the LVDC network. The network behaviour during transients is analysed by time-domain simulations. The network is shown to be transient stable during large-scale disturbances. Measurement results on the LVDC research platform proving this are presented in the work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty-four surgical patients of both sexes without cardiac, hepatic, renal or endocrine dysfunctions were divided into two groups: 10 cardiac surgical patients submitted to myocardial revascularization and cardiopulmonary bypass (CPB), 3 females and 7 males aged 65 ± 11 years, 74 ± 16 kg body weight, 166 ± 9 cm height and 1.80 ± 0.21 m2 body surface area (BSA), and control, 14 surgical patients not submitted to CPB, 11 female and 3 males aged 41 ± 14 years, 66 ± 14 kg body weight, 159 ± 9 cm height and 1.65 ± 0.16 m2 BSA (mean ± SD). Sodium diclofenac (1 mg/kg, im Voltaren 75® twice a day) was administered to patients in the Recovery Unit 48 h after surgery. Venous blood samples were collected during a period of 0-12 h and analgesia was measured by the visual analogue scale (VAS) during the same period. Plasma diclofenac levels were measured by high performance liquid chromatography. A two-compartment open model was applied to obtain the plasma decay curve and to estimate kinetic parameters. Plasma diclofenac protein binding decreased whereas free plasma diclofenac levels were increased five-fold in CPB patients. Data obtained for analgesia reported as the maximum effect (EMAX) were: 25% VAS (CPB) vs 10% VAS (control), P<0.05, median measured by the visual analogue scale where 100% is equivalent to the highest level of pain. To correlate the effect versus plasma diclofenac levels, the EMAX sigmoid model was applied. A prolongation of the mean residence time for maximum effect (MRTEMAX) was observed without any change in lag-time in CPB in spite of the reduced analgesia reported for these patients, during the time-dose interval. In conclusion, the extent of plasma diclofenac protein binding was influenced by CPB with clinically relevant kinetic-dynamic consequences

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cDNA microarray is an innovative technology that facilitates the analysis of the expression of thousands of genes simultaneously. The utilization of this methodology, which is rapidly evolving, requires a combination of expertise from the biological, mathematical and statistical sciences. In this review, we attempt to provide an overview of the principles of cDNA microarray technology, the practical concerns of the analytical processing of the data obtained, the correlation of this methodology with other data analysis methods such as immunohistochemistry in tissue microarrays, and the cDNA microarray application in distinct areas of the basic and clinical sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model is used to predict the growth of Staphylococcus aureus in a pasteurized meat product kept at ambient temperatures for several hours. For this purpose, the temperature profiles of some cities of Mexico were combined with literature data on the kinetics of S. aureus growth. As shown by theoretical predictions, if the food is kept at ambient temperature, the average daily temperature may not give accurate predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nykypäivän monimutkaisessa ja epävakaassa liiketoimintaympäristössä yritykset, jotka kykenevät muuttamaan tuottamansa operatiivisen datan tietovarastoiksi, voivat saavuttaa merkittävää kilpailuetua. Ennustavan analytiikan hyödyntäminen tulevien trendien ennakointiin mahdollistaa yritysten tunnistavan avaintekijöitä, joiden avulla he pystyvät erottumaan kilpailijoistaan. Ennustavan analytiikan hyödyntäminen osana päätöksentekoprosessia mahdollistaa ketterämmän, reaaliaikaisen päätöksenteon. Tämän diplomityön tarkoituksena on koota teoreettinen viitekehys analytiikan mallintamisesta liike-elämän loppukäyttäjän näkökulmasta ja hyödyntää tätä mallinnusprosessia diplomityön tapaustutkimuksen yritykseen. Teoreettista mallia hyödynnettiin asiakkuuksien mallintamisessa sekä tunnistamalla ennakoivia tekijöitä myynnin ennustamiseen. Työ suoritettiin suomalaiseen teollisten suodattimien tukkukauppaan, jolla on liiketoimintaa Suomessa, Venäjällä ja Balteissa. Tämä tutkimus on määrällinen tapaustutkimus, jossa tärkeimpänä tiedonkeruumenetelmänä käytettiin tapausyrityksen transaktiodataa. Data työhön saatiin yrityksen toiminnanohjausjärjestelmästä.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presented the overview of Open Data research area, quantity of evidence and establishes the research evidence based on the Systematic Mapping Study (SMS). There are 621 such publications were identified published between years 2005 and 2014, but only 243 were selected in the review process. This thesis highlights the implications of Open Data principals’ proliferation in the emerging era of the accessibility, reusability and sustainability of data transparency. The findings of mapping study are described in quantitative and qualitative measurement based on the organization affiliation, countries, year of publications, research method, star rating and units of analysis identified. Furthermore, units of analysis were categorized by development lifecycle, linked open data, type of data, technical platforms, organizations, ontology and semantic, adoption and awareness, intermediaries, security and privacy and supply of data which are important component to provide a quality open data applications and services. The results of the mapping study help the organizations (such as academia, government and industries), re-searchers and software developers to understand the existing trend of open data, latest research development and the demand of future research. In addition, the proposed conceptual framework of Open Data research can be adopted and expanded to strengthen and improved current open data applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.