896 resultados para computation- and data-intensive applications
Resumo:
La gestión de recursos en los procesadores multi-core ha ganado importancia con la evolución de las aplicaciones y arquitecturas. Pero esta gestión es muy compleja. Por ejemplo, una misma aplicación paralela ejecutada múltiples veces con los mismos datos de entrada, en un único nodo multi-core, puede tener tiempos de ejecución muy variables. Hay múltiples factores hardware y software que afectan al rendimiento. La forma en que los recursos hardware (cómputo y memoria) se asignan a los procesos o threads, posiblemente de varias aplicaciones que compiten entre sí, es fundamental para determinar este rendimiento. La diferencia entre hacer la asignación de recursos sin conocer la verdadera necesidad de la aplicación, frente a asignación con una meta específica es cada vez mayor. La mejor manera de realizar esta asignación és automáticamente, con una mínima intervención del programador. Es importante destacar, que la forma en que la aplicación se ejecuta en una arquitectura no necesariamente es la más adecuada, y esta situación puede mejorarse a través de la gestión adecuada de los recursos disponibles. Una apropiada gestión de recursos puede ofrecer ventajas tanto al desarrollador de las aplicaciones, como al entorno informático donde ésta se ejecuta, permitiendo un mayor número de aplicaciones en ejecución con la misma cantidad de recursos. Así mismo, esta gestión de recursos no requeriría introducir cambios a la aplicación, o a su estrategia operativa. A fin de proponer políticas para la gestión de los recursos, se analizó el comportamiento de aplicaciones intensivas de cómputo e intensivas de memoria. Este análisis se llevó a cabo a través del estudio de los parámetros de ubicación entre los cores, la necesidad de usar la memoria compartida, el tamaño de la carga de entrada, la distribución de los datos dentro del procesador y la granularidad de trabajo. Nuestro objetivo es identificar cómo estos parámetros influyen en la eficiencia de la ejecución, identificar cuellos de botella y proponer posibles mejoras. Otra propuesta es adaptar las estrategias ya utilizadas por el Scheduler con el fin de obtener mejores resultados.
Resumo:
Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.
Resumo:
The current state of regional and urban science has been much discussed and a number of studies have speculated on possible future trends in the development of the discipline. However, there has been little empirical analysis of current publication patterns in regional and urban journals. This paper studies the kinds of topics, techniques and data used in articles published in nine top international journals during the 1990s with the aim of identifying current trends in this research field
Resumo:
The current state of regional and urban science has been much discussed and a number of studies have speculated on possible future trends in the development of the discipline. However, there has been little empirical analysis of current publication patterns in regional and urban journals. This paper studies the kinds of topics, techniques and data used in articles published in nine top international journals during the 1990s with the aim of identifying current trends in this research field
Resumo:
OBJECTIVE: Critically ill patients are at high risk of malnutrition. Insufficient nutritional support still remains a widespread problem despite guidelines. The aim of this study was to measure the clinical impact of a two-step interdisciplinary quality nutrition program. DESIGN: Prospective interventional study over three periods (A, baseline; B and C, intervention periods). SETTING: Mixed intensive care unit within a university hospital. PATIENTS: Five hundred seventy-two patients (age 59 ± 17 yrs) requiring >72 hrs of intensive care unit treatment. INTERVENTION: Two-step quality program: 1) bottom-up implementation of feeding guideline; and 2) additional presence of an intensive care unit dietitian. The nutrition protocol was based on the European guidelines. MEASUREMENTS AND MAIN RESULTS: Anthropometric data, intensive care unit severity scores, energy delivery, and cumulated energy balance (daily, day 7, and discharge), feeding route (enteral, parenteral, combined, none-oral), length of intensive care unit and hospital stay, and mortality were collected. Altogether 5800 intensive care unit days were analyzed. Patients in period A were healthier with lower Simplified Acute Physiologic Scale and proportion of "rapidly fatal" McCabe scores. Energy delivery and balance increased gradually: impact was particularly marked on cumulated energy deficit on day 7 which improved from -5870 kcal to -3950 kcal (p < .001). Feeding technique changed significantly with progressive increase of days with nutrition therapy (A: 59% days, B: 69%, C: 71%, p < .001), use of enteral nutrition increased from A to B (stable in C), and days on combined and parenteral nutrition increased progressively. Oral energy intakes were low (mean: 385 kcal*day, 6 kcal*kg*day ). Hospital mortality increased with severity of condition in periods B and C. CONCLUSION: A bottom-up protocol improved nutritional support. The presence of the intensive care unit dietitian provided significant additional progression, which were related to early introduction and route of feeding, and which achieved overall better early energy balance.
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.
Resumo:
Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.
Resumo:
The purpose of this study is to examine and explain firm`s growth impact on capital structure decision-making in research and development intensive companies. Many studies claim that R&D has a pivotal impact on capital structure decisions, but corporate finance theories have often failed to explain these observed patterns. As sales growth is an important concept and objective for R&D firms, it is logical to assume that it plays a vital role in capital structure decisions. This study applies nomothetic research approach. The theoretical part employs a formal conceptual analysis in order to develop the propositions that are tested with empirical data. The empirical part consists of the analysis of three companies; the data is obtained from the annual reports over the period 2003 – 2008. The companies operate in IT- or ICT-industry and are publicly listed. The method for analyzing the case data is based on the financial indicators, which are obtained from the financials of the case companies. These economic indicators describe the capital structure and the financial decision-making of the firms. The method relates to the quantitative studies. Yet, this study extends the analysis beyond the indicators. Specifically, this study addresses the question of what is behind the economic indicators, therefore combining aspects of quantitative and qualitative analysis. The firms examined in this study seem to prefer internal finance during growth. However, external finance seems to be a catalyst for sales growth. Firms strongly prefer equity financing. In growth, the use of equity per capital either increases or stays in a constant level. Over the period 2003 – 2008, the firms were often associated to equity related transactions and short-term debt. Short-term debt was used as a substitute of long-term debt and equity. The case firms also adjusted their capital structure – these adjustments were carried out with short-term debt or equity. The case data also provides implications for the growth signal theory that was developed in this study. Based on the econometric indicators, arguments can be made that equity investors are `attracted` to growing R&D firms. This is because growth helps investors perceive the true type of firm. The findings of this study are best explained by the trade-off theory and the pecking order theory. These corporate finance theories are considered as mainstream. Little support can be found to the implications of the signaling theory and market timing theory.
Resumo:
Open data refers to publishing data on the web in machine-readable formats for public access. Using open data, innovative applications can be developed to facilitate people‟s lives. In this thesis, based on the open data cases (discussed in the literature review), Open Data Lappeenranta is suggested, which publishes open data related to opening hours of shops and stores in Lappeenranta City. To prove the possibility of creating Open Data Lappeenranta, the implementation of an open data system is presented in this thesis, which publishes specific data related to shops and stores (including their opening hours) on the web in standard format (JSON). The published open data is used to develop web and mobile applications to demonstrate the benefits of open data in practice. Also, the open data system provides manual and automatic interfaces which make it possible for shops and stores to maintain their own data in the system. Finally in this thesis, the completed version of Open Data Lappeenranta is proposed, which publishes open data related to other fields and businesses in Lappeenranta beyond only stores‟ data.
Resumo:
Teaching, research, and herd breeding applications may require calculation of breed additive contributions for direct and maternal genetic effects and fractions of heterozygosity associated with breed specific direct and maternal heterosis effects. These coefficients can be obtained from the first NB rows of a pseudo numerator relationship matrix where the first NB rows represent fractional contributions by breed to each animal or group representing a specific breed cross. The table begins with an NB x NB identity matrix representing pure breeds. Initial animals or representative crosses must be purebreds or two-breed crosses. Parents of initial purebreds are represented by the corresponding column and initial two-breed cross progeny by the two corresponding columns of the identity matrix. After that, usual rules are used to calculate the NB column entries corresponding to breeds for each animal. The NB entries are fractions of genes expected to be contributed by each of the pure breeds and correspond to the breed additive direct fractions. Entries in the column corresponding to the dam represent breed additive maternal fractions. Breed specific direct heterozygosity coefficients are entries of an NB x NB matrix formed by the outer product of the two NB by 1 columns associated with sire and dam of the animal. One minus sum of the diagonals represents total direct heterozygosity. Similarly, the NB x NB matrix formed by the outer product of columns associated with sire of dam and dam of dam contains breed specific maternal heterozygosity coefficients. These steps can be programmed to create covariates to merge with data. If X represents these coefficients for all unique breed crosses, then the reduced row echelon form function of MATLAB or SAS can be used on X to determine estimable functions of additive breed direct and maternal effects and breed specific direct and maternal heterosis effects
Resumo:
As technology has developed it has increased the number of data produced and collected from business environment. Over 80% of that data includes some sort of reference to geographical location. Individuals have used that information by utilizing Google Maps or different GPS devices, however such information has remained unexploited in business. This thesis will study the use and utilization of geographically referenced data in capital-intensive business by first providing theoretical insight into how data and data-driven management enables and enhances the business and how especially geographically referenced data adds value to the company and then examining empirical case evidence how geographical information can truly be exploited in capital-intensive business and what are the value adding elements of geographical information to the business. The study contains semi-structured interviews that are used to scan attitudes and beliefs of an organization towards the geographic information and to discover fields of applications for the use of geographic information system within the case company. Additionally geographical data is tested in order to illustrate how the data could be used in practice. Finally the outcome of the thesis provides understanding from which elements the added value of geographical information in business is consisted of and how such data can be utilized in the case company and in capital-intensive business.
Resumo:
The molecular mechanisms and potential clinical applications of neural precursor cells have recently been the subject of intensive study. Dlx5, a homeobox transcription factor related to the distal-less gene in Drosophila, was shown to play an important role during forebrain development. The subventricular zone (SVZ) in the adult brain harbors the largest abundance of neural precursors. The anterior SVZ (SVZa) contains the most representative neural precursors in the SVZ. Further research is necessary to elucidate how Dlx5-related genes regulate the differentiation of SVZa neural precursors. Here, we employed immunohistochemistry and molecular biology techniques to study the expression of Dlx5 and related homeobox genes Er81 and Islet1 in neonatal rat brain and in in vitro cultured SVZa neural precursors. Our results show that Dlx5 and Er81 are also highly expressed in the SVZa, rostral migratory stream, and olfactory bulb. Islet1 is only expressed in the striatum. In cultured SVZa neural precursors, Dlx5 mRNA expression gradually decreased with subsequent cell passages and was completely lost by passage four. We also transfected a Dlx5 recombinant plasmid and found that Dlx5 overexpression promoted neuronal differentiation of in vitro cultured SVZa neural precursors. Taken together, our data suggest that Dlx5 plays an important role during neuronal differentiation.
Resumo:
Spatial data representation and compression has become a focus issue in computer graphics and image processing applications. Quadtrees, as one of hierarchical data structures, basing on the principle of recursive decomposition of space, always offer a compact and efficient representation of an image. For a given image, the choice of quadtree root node plays an important role in its quadtree representation and final data compression. The goal of this thesis is to present a heuristic algorithm for finding a root node of a region quadtree, which is able to reduce the number of leaf nodes when compared with the standard quadtree decomposition. The empirical results indicate that, this proposed algorithm has quadtree representation and data compression improvement when in comparison with the traditional method.
Resumo:
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed
Resumo:
This paper analyzes the measure of systemic importance ∆CoV aR proposed by Adrian and Brunnermeier (2009, 2010) within the context of a similar class of risk measures used in the risk management literature. In addition, we develop a series of testing procedures, based on ∆CoV aR, to identify and rank the systemically important institutions. We stress the importance of statistical testing in interpreting the measure of systemic importance. An empirical application illustrates the testing procedures, using equity data for three European banks.