915 resultados para combinatorial auction
Resumo:
A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.
Resumo:
Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.
Resumo:
Production scheduling in a flexible manufacturing system (FMS) is a real-time combinatorial optimization problem that has been proved to be NP-complete. Solving this problem needs on-line monitoring of plan execution and requires real-time decision-making in selecting alternative routings, assigning required resources, and rescheduling when failures occur in the system. Expert systems provide a natural framework for solving this kind of NP-complete problems.In this paper an expert system with a novel parallel heuristic approach is implemented for automatic short-term dynamic scheduling of FMS. The principal features of the expert system presented in this paper include easy rescheduling, on-line plan execution, load balancing, an on-line garbage collection process, and the use of advanced knowledge representational schemes. Its effectiveness is demonstrated with two examples.
Resumo:
A generalization of Nash-Williams′ lemma is proved for the Structure of m-uniform null (m − k)-designs. It is then applied to various graph reconstruction problems. A short combinatorial proof of the edge reconstructibility of digraphs having regular underlying undirected graphs (e.g., tournaments) is given. A type of Nash-Williams′ lemma is conjectured for the vertex reconstruction problem.
Resumo:
The decision to patent a technology is a difficult one to make for the top management of any organization. The expected value that the patent might deliver in the market is an important factor that impacts this judgement. Earlier researchers have suggested that patent prices are better indicators of value of a patent and that auction prices are the best way of determining value. However, the lack of public data on pricing has prevented research on understanding the dynamics of patent pricing. Our paper uses singleton patent auction price data of Ocean Tomo LLC to study the prices of patents. We describe price characteristics of these patents. The price of these patents was correlated with their age, and a significant correlation was found. A price - age matrix was developed and we describe the price characteristics of patents using four quadrants of the matrix, namely young and old patents with low and high prices. We also found that patents owned by small firms get transacted more often and inventor owned patents attracted a better price than assignee owned patents.
Resumo:
We present an elementary combinatorial proof of the existence and uniqueness of the 9-vertex triangulation of C P2. The original proof of existence, due to Kuhnel, as well as the original proof of uniqueness, due to Kuhnel and Lassmann, were based on extensive computer search. Recently Arnoux and Marin have used cohomology theory to present a computer-free proof. Our proof has the advantage of displaying a canonical copy of the affine plane over the three-element field inside this complex in terms of which the entire complex has a very neat and short description. This explicates the full automorphism group of the Kuhnel complex as a subgroup of the automorphism group of this affine plane. Our method also brings out the rich combinatorial structure inside this complex.
Resumo:
Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.
Resumo:
We give a simple linear algebraic proof of the following conjecture of Frankl and Furedi [7, 9, 13]. (Frankl-Furedi Conjecture) if F is a hypergraph on X = {1, 2, 3,..., n} such that 1 less than or equal to /E boolean AND F/ less than or equal to k For All E, F is an element of F, E not equal F, then /F/ less than or equal to (i=0)Sigma(k) ((i) (n-1)). We generalise a method of Palisse and our proof-technique can be viewed as a variant of the technique used by Tverberg to prove a result of Graham and Pollak [10, 11, 14]. Our proof-technique is easily described. First, we derive an identity satisfied by a hypergraph F using its intersection properties. From this identity, we obtain a set of homogeneous linear equations. We then show that this defines the zero subspace of R-/F/. Finally, the desired bound on /F/ is obtained from the bound on the number of linearly independent equations. This proof-technique can also be used to prove a more general theorem (Theorem 2). We conclude by indicating how this technique can be generalised to uniform hypergraphs by proving the uniform Ray-Chaudhuri-Wilson theorem. (C) 1997 Academic Press.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.
Resumo:
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.
Resumo:
In pay-per click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their ads. This auction is typically conducted for a number of rounds (say T). There are click probabilities mu_ij associated with agent-slot pairs. The search engine's goal is to maximize social welfare, for example, the sum of values of the advertisers. The search engine does not know the true value of an advertiser for a click to her ad and also does not know the click probabilities mu_ij s. A key problem for the search engine therefore is to learn these during the T rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced and would be referred to as multi-armed-bandit (MAB) mechanisms. When m = 1,characterizations for truthful MAB mechanisms are available in the literature and it has been shown that the regret for such mechanisms will be O(T^{2/3}). In this paper, we seek to derive a characterization in the realistic but nontrivial general case when m > 1 and obtain several interesting results.
Resumo:
In this paper, we address a key problem faced by advertisers in sponsored search auctions on the web: how much to bid, given the bids of the other advertisers, so as to maximize individual payoffs? Assuming the generalized second price auction as the auction mechanism, we formulate this problem in the framework of an infinite horizon alternative-move game of advertiser bidding behavior. For a sponsored search auction involving two advertisers, we characterize all the pure strategy and mixed strategy Nash equilibria. We also prove that the bid prices will lead to a Nash equilibrium, if the advertisers follow a myopic best response bidding strategy. Following this, we investigate the bidding behavior of the advertisers if they use Q-learning. We discover empirically an interesting trend that the Q-values converge even if both the advertisers learn simultaneously.
Resumo:
Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the problem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algorithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted graphs. Zwick [14] showed that for any fixed ε> 0, stretch 1 1 + ε distances between all pairs of vertices in a weighted directed graph on n vertices can be computed in Õ(n ω) time, where ω < 2.376 is the exponent of matrix multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that all-pairs stretch 3 distances can be computed in Õ(n 2) time and all-pairs stretch 7/3 distances can be computed in Õ(n 7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances in G, for any 0 < ε < 1. We show that all pairs stretch (2 + ε) distances for any fixed ε> 0 in G can be computed in expected time O(n 9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinatorial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n 9/4) for computing all-pairs stretch 5/2 distances in G. 1
Resumo:
This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.
Resumo:
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.