955 resultados para collaborative intrusion detection
Resumo:
Automated visual surveillance of crowds is a rapidly growing area of research. In this paper we focus on motion representation for the purpose of abnormality detection in crowded scenes. We propose a novel visual representation called textures of optical flow. The proposed representation measures the uniformity of a flow field in order to detect anomalous objects such as bicycles, vehicles and skateboarders; and can be combined with spatial information to detect other forms of abnormality. We demonstrate that the proposed approach outperforms state-of-the-art anomaly detection algorithms on a large, publicly-available dataset.
Resumo:
Undergraduates working in teams can be a problematic endeavour, sometimes exacerbated for the student by poor prior experiences, a predisposition to an individual orientation of assessment, and simply the busyness that now typifies the life of a student. But effort in pedagogical design is worthwhile where team work is often a prerequisite in terms of graduate capabilities, robust learning, increased motivation, and indeed in terms of equipping individuals for emergent knowledge-age work practice, often epitomised by collaborative effort in both blended and virtual contexts. Through an iterative approach, based extensively on the established literature, we have developed a successful scaffold which is workable with a large cohort group (n >800), such that it affords students the lived experience of being a part of a learning network. Individuals within teams work together, to develop individual components that are subsequently aggregated and reified to an overall team knowledge artefact. We describe our case and propose a pedagogical model of scaffolding based on three perspectives: conceptual, rule-based and community-driven. This model provides designers with guidelines for producing and refining assessment tasks for team-based learning.
Resumo:
Purpose Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. In this paper we suggest a 3D environment for collaborative process modeling, using Virtual World technology. Design/methodology/approach We suggest a new collaborative process modeling approach based on Virtual World technology. We describe the design of an innovative prototype collaborative process modeling approach, implemented as a 3D BPMN modeling environment in Second Life. We use a case study to evaluate the suggested approach. Findings Based on our case study application, we show that our approach increases user empowerment and adds significantly to the collaboration and consensual development of process models even when the relevant stakeholders are geographically dispersed. Research limitations implications – We present design work and a case study. More research is needed to more thoroughly evaluate the presented approach in a variety of real-life process modeling settings. Practical implications Our research outcomes as design artifacts are directly available and applicable by business process management professionals and can be used by business, system and process analysts in real-world practice. Originality/value Our research is the first reported attempt to develop a process modeling approach on the basis of virtual world technology. We describe a novel and innovative 3D BPMN modeling environment in Second Life.
Resumo:
Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.
Resumo:
Climate change effects are expected to substantially raise the average sea level. It is widely assumed that this raise will have a severe adverse impact on saltwater intrusion processes in coastal aquifers. In this study we hypothesize that a natural mechanism, identified as the “lifting process” has the potential to mitigate or in some cases completely reverse the adverse intrusion effects induced by sea-level rise. A detailed numerical study using the MODFLOW-family computer code SEAWAT, was completed to test this hypothesis and to understand the effects of this lifting process in both confined and unconfined systems. Our conceptual simulation results show that if the ambient recharge remains constant, the sea-level rise will have no long-term impact (i.e., it will not affect the steady-state salt wedge) on confined aquifers. Our transient confined flow simulations show a self-reversal mechanism where the wedge which will initially intrude into the formation due to the sea-level rise would be naturally driven back to the original position. In unconfined systems, the lifting process would have a lesser influence due to changes in the value of effective transmissivity. A detailed sensitivity analysis was also completed to understand the sensitivity of this self-reversal effect to various aquifer parameters.
Resumo:
The focus of the present research was to investigate how Local Governments in Queensland were progressing with the adoption of delineated DM policies and supporting guidelines. The study consulted Local Government representatives and hence, the results reflect their views on these issues. Is adoption occurring? To what degree? Are policies and guidelines being effectively implemented so that the objective of a safer, more resilient community is being achieved? If not, what are the current barriers to achieving this, and can recommendations be made to overcome these barriers? These questions defined the basis on which the present study was designed and the survey tools developed. While it was recognised that LGAQ and Emergency Management Queensland (EMQ) may have differing views on some reported issues, it was beyond the scope of the present study to canvass those views. The study resolved to document and analyse these questions under the broad themes of: • Building community capacity (notably via community awareness). • Council operationalisation of DM. • Regional partnerships (in mitigation/adaptation). Data was collected via a survey tool comprising two components: • An online questionnaire survey distributed via the LGAQ Disaster Management Alliance (hereafter referred to as the “Alliance”) to DM sections of all Queensland Local Government Councils; and • a series of focus groups with selected Queensland Councils
Resumo:
This paper proposes a novel approach for identifying risks in executable business processes and detecting them at run time. The approach considers risks in all phases of the business process management lifecycle, and is realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of faults to occur. Both historical and current execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a process automation suite to prompt the results to the user who may take remedial actions. The proposed architecture has been implemented in the YAWL system and its performance has been evaluated in practice.
Resumo:
Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.
Resumo:
This paper presents a preliminary study into collaborated processes for art-making, undertaken by a young child and an adult. The study explores collaborative drawing in the context of sociocultural research into early childhood education. The study particularly examines whether childhood techniques for making marks, creative processing and art-making could be ‘re-learned’ by the adult, while new opportunities for expanding on extant repertoire could be available to the child. In this context the child teaches and learns from the adult, and the adult teaches and learns from the child. The study utilised video-data-recording to facilitate microanalysis of the researchers in action, enabling the adult researcher to present a discourse into the dynamics of how the visual, mark-making repertoires of an adult and child can be co-developed. Preliminary findings help contribute to the various discourses available into sociocultural research that supports processes for exploring and making art, and which allows a challenge to the role of the adult educator as a provider or director of what is learned.
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This demonstration showcases a novel prototype application that implements collaborative virtual environment and augmented reality technologies to improve remote collaborative process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in an intuitive shared work and task space. Our tool is easily deployed using open source software, and commodity hardware, and is expected to assist with saving money on travel costs for large scale process modelling projects covering national and international centres within an enterprise.
Resumo:
This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.