827 resultados para clustering accuracy
Resumo:
Carsberg (2002) suggested that the periodic valuation accuracy studies undertaken by, amongst others, IPD/Drivers Jonas (2003) should be undertaken every year and be sponsored by the RICS, which acts as the self-regulating body for valuations in the UK. This paper does not address the wider issues concerning the nature of properties which are sold and whether the sale prices are influenced by prior valuations, but considers solely the technical issues concerning the timing of the valuation and sales data. This study uses valuations and sales data from the Investment Property Databank UK Monthly Index to attempt to identify the date that sale data is divulged to valuers. This information will inform accuracy studies that use a cut-off date as to the closeness of valuations to sales completion date as a yardstick for excluding data from the analysis. It will also, assuming valuers are informed quickly of any agreed sales, help to determine the actual sale agreed date rather than the completion date, which includes a period of due diligence between when the sale is agreed and its completion. Valuations should be updated to this date, rather than the formal completion date, if a reliable measure of valuation accuracy is to be determined. An accuracy study is then undertaken using a variety of updating periods and the differences between the results are examined. The paper concludes that the sale only becomes known to valuers in the month prior to the sale taking place and that this assumes either that sales due diligence procedures are shortening or valuers are not told quickly of agreed sale prices. Studies that adopt a four-month cut-off date for any valuations compared to sales completion dates are over cautious, and this could be reduced to two months without compromising the data.
Resumo:
We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.
Resumo:
This paper describes the recent developments and improvements made to the variable radius niching technique called Dynamic Niche Clustering (DNC). DNC is fitness sharing based technique that employs a separate population of overlapping fuzzy niches with independent radii which operate in the decoded parameter space, and are maintained alongside the normal GA population. We describe a speedup process that can be applied to the initial generation which greatly reduces the complexity of the initial stages. A split operator is also introduced that is designed to counteract the excessive growth of niches, and it is shown that this improves the overall robustness of the technique. Finally, the effect of local elitism is documented and compared to the performance of the basic DNC technique on a selection of 2D test functions. The paper is concluded with a view to future work to be undertaken on the technique.
Resumo:
In this paper, a continuation of a variable radius niche technique called Dynamic Niche Clustering developed by (Gan & Warwick, 1999) is presented. The technique employs a separate dynamic population of overlapping niches that coexists alongside the normal population. An empirical analysis of the updated methodology on a large group of standard optimisation test-bed functions is also given. The technique is shown to perform almost as well as standard fitness sharing with regards to stability and the accuracy of peak identification, but it outperforms standard fitness sharing with regards to time complexity. It is also shown that the technique is capable of forming niches of varying size depending on the characteristics of the underlying peak that the niche is populating.
Resumo:
The relationship between valuations and the subsequent sale price continues to be a matter of both theoretical and practical interest. This paper reports the analysis of over 700 property sales made during the 1974/90 period. Initial results imply an average under-valuation of 7% and a standard error of 18% across the sample. A number of techniques are applied to the data set using other variables such as the region, the type of property and the return from the market to explain the difference between the valuation and the subsequent sale price. The analysis reduces the unexplained error; the bias is fully accounted for and the standard error is reduced to 15.3%. This model finds that about 6% of valuations over-estimated the sale price by more than 20% and about 9% of the valuations under-estimated the sale prices by more than 20%. The results suggest that valuations are marginally more accurate than might be expected, both from consideration of theoretical considerations and from comparison with the equivalent valuation in equity markets.
Resumo:
The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. This work proposes a fully decentralised algorithm (Epidemic K-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art distributed K-Means algorithms based on sampling methods. The experimental analysis confirms that the proposed algorithm is a practical and accurate distributed K-Means implementation for networked systems of very large and extreme scale.