968 resultados para classifier, pragmatics, information transport, symbolic logic
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
The "recursive" definition of Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the "recursive" fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning of the fixed-point is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original "recursive" definition of Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults.
Resumo:
A Quantified Autoepistemic Logic is axiomatized in a monotonic Modal Quantificational Logic whose modal laws are slightly stronger than S5. This Quantified Autoepistemic Logic obeys all the laws of First Order Logic and its L predicate obeys the laws of S5 Modal Logic in every fixed-point. It is proven that this Logic has a kernel not containing L such that L holds for a sentence if and only if that sentence is in the kernel. This result is important because it shows that L is superfluous thereby allowing the ori ginal equivalence to be simplified by eliminating L from it. It is also shown that the Kernel of Quantified Autoepistemic Logic is a generalization of Quantified Reflective Logic, which coincides with it in the propositional case.
Resumo:
Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be solved. However, usually SP/PS are not substantiated well enough, because their development is based on a collective expertise in which logic of natural language and expert estimation methods are used. That is why scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and vague problems.
Resumo:
The nonmonotonic logic called Reflective Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Reflective Logic with an initial set of axioms and defaults if and only if the meaning of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Reflective Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since all the laws of First Order Logic hold and since both the Barcan Formula and its converse hold.
Resumo:
The nonmonotonic logic called Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan Formula and its converse hold.
Resumo:
Reflective Logic and Default Logic are both generalized so as to allow universally quantified variables to cross modal scopes whereby the Barcan formula and its converse hold. This is done by representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before the defaults. The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are then compared by deriving metatheorems of Z that express their relationships. The main result is to show that every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the equivalence for Quantified Reflective Logic. It is further shown that Quantified Reflective Logic and Quantified Default Logic have exactly the same solutions when no default has an entailment condition.
Resumo:
The nonmonotonic logic called Autoepistemic Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Autoepistemic Logic with an initial set of axioms if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meaning of that initial set of sentences. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and unlike the original Autoepistemic Logic, it is easily generalized to the case where quantified variables may be shared across the scope of modal expressions thus allowing the derivation of quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan formula and its converse hold.
Resumo:
The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.
Resumo:
The objects of a large-scale gas-transport company (GTC) suggest a complex unified evolutionary approach, which covers basic building concepts, up-to-date technologies, models, methods and means that are used in the phases of design, adoption, maintenance and development of the multilevel automated distributed control systems (ADCS).. As a single methodological basis of the suggested approach three basic Concepts, which contain the basic methodological principles and conceptual provisions on the creation of distributed control systems, were worked out: systems of the lower level (ACS of the technological processes based on up-to-date SCADA), of the middle level (ACS of the operative-dispatch production control based on MES-systems) and of the high level (business process control on the basis of complex automated systems ERP).
Resumo:
In this paper a novel method for an application of digital image processing, Edge Detection is developed. The contemporary Fuzzy logic, a key concept of artificial intelligence helps to implement the fuzzy relative pixel value algorithms and helps to find and highlight all the edges associated with an image by checking the relative pixel values and thus provides an algorithm to abridge the concepts of digital image processing and artificial intelligence. Exhaustive scanning of an image using the windowing technique takes place which is subjected to a set of fuzzy conditions for the comparison of pixel values with adjacent pixels to check the pixel magnitude gradient in the window. After the testing of fuzzy conditions the appropriate values are allocated to the pixels in the window under testing to provide an image highlighted with all the associated edges.
Resumo:
This article discusses a solution method for Hamilton Problem, which either finds the task's solution, or indicates that the task is unsolvable. Offered method has significantly smaller requirements for computing resources than known algorithms.
Resumo:
The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines.
Resumo:
Pavement performance is one of the most important components of the pavement management system. Prediction of the future performance of a pavement section is important in programming maintenance and rehabilitation needs. Models for predicting pavement performance have been developed on the basis of traffic and age. The purpose of this research is to extend the use of a relatively new approach to performance prediction in pavement performance modeling using adaptive logic networks (ALN). Adaptive logic networks have recently emerged as an effective alternative to artificial neural networks for machine learning tasks. ^ The ALN predictive methodology is applicable to a wide variety of contexts including prediction of roughness based indices, composite rating indices and/or individual pavement distresses. The ALN program requires key information about a pavement section, including the current distress indexes, pavement age, climate region, traffic and other variables to predict yearly performance values into the future. ^ This research investigates the effect of different learning rates of the ALN in pavement performance modeling. It can be used at both the network and project level for predicting the long term performance of a road network. Results indicate that the ALN approach is well suited for pavement performance prediction modeling and shows a significant improvement over the results obtained from other artificial intelligence approaches. ^
Resumo:
The Bahamas is a small island nation that is dealing with the problem of freshwater shortage. All of the country’s freshwater is contained in shallow lens aquifers that are recharged solely by rainfall. The country has been struggling to meet the water demands by employing a combination of over-pumping of aquifers, transport of water by barge between islands, and desalination of sea water. In recent decades, new development on New Providence, where the capital city of Nassau is located, has created a large area of impervious surfaces and thereby a substantial amount of runoff with the result that several of the aquifers are not being recharged. A geodatabase was assembled to assess and estimate the quantity of runoff from these impervious surfaces and potential recharge locations were identified using a combination of Geographic Information Systems (GIS) and remote sensing. This study showed that runoff from impervious surfaces in New Providence represents a large freshwater resource that could potentially be used to recharge the lens aquifers on New Providence.