951 resultados para chicken embryo related cells
Resumo:
Porcine circoviruses (PCVs) belong to the genus Circovirus, family Circoviridae. and are the smallest non-enveloped, single stranded, negative sense, circular DNA viruses that replicate autonomously in mammalian cells. Two types of PCV have been characterised, PCV1 and PCV2 and these two viruses show 83% sequence identity at open reading frame (ORF) 1 and 67% identity at ORF2. PCV1 is a nonpathogenic virus of pigs. In contrast, PCV2 has emerged as a major pathogen of swine around the world. The discovery of PCV1 and how the subsequent studies on this virus eventually led to the recognition and characterisation of PCV2, and the disease scenarios associated with PCV2, serve as a model of how multidisciplinary collaboration among field veterinarians, diagnosticians and researchers can lead to the rapid characterisation and control of a globally important emerging disease. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Several authors have shown that neutrophil generation of reactive oxygen species (ROS) declines with advancing age. Similar changes have also been suggested in monocytes. In both cases alterations in second messenger activity have been implicated as the most likely explanation for these observations. The aim of this study was to investigate the effect of age on phagocyte ROS generation, stimulated by the direct activation of protein kinase C (PKC). Venous blood was drawn from normal healthy subjects, cells were separated on a double density gradient into mononuclear and polymorphonuclear (pmn) cells. Phorbol myristate acetate (PMA) was employed as a cell stimulus. Superoxide generation was measured by cytochrome c reduction and myeloperoxidase (MPO) products by measurement of peak luminol chemiluminescence (CL). Fifty-eight subjects, 25 males and 33 females, were studied, median age 49 years (range 26-88 years). Polymorphonuclear cell superoxide generation was significantly higher in males and there was a trend towards higher pmn MPO product generation in males. Using Spearman's ranked correlation coefficient, monocyte superoxide generation was negatively correlated with age (r = -0.473, P <0.001). No changes in the generation of MPO products was found. There were also trends towards a negative correlation of pmn cytochrome c reduction and peak luminol CL with age in males but not females. Since PMA directly activates protein kinase C, reduced monocyte superoxide generation with increasing age appears to be related to alterations in the ROS generating system downstream of the cell receptor. Impaired monocyte superoxide generation may have implications for non-specific defence against certain infections and early tumour growth in the elderly. Factors underlying these changes in monocyte function therefore require further study.
Resumo:
The formation of ATP breakdown products in chicken M. pectoralis major post-slaughter is reported. The concentrations of metabolites were followed in chicken breast throughout the carcass processing post-slaughter and during chilled storage. The concentration of glucose remains similar throughout the period whilst that of glucose-6-phosphate decreases linearly. Glucose and glucose-6-phosphate concentrations were inversely related to the pHu of the breast meat throughout chilled storage. Rapid post-mortem glycolysis and high pHu values suggest the occurrence of stress at and pre-slaughter. Whilst ATP, ADP and AMP were rapidly broken down, the concentration of IMP rose rapidly and remained high. Concentrations of inosine, ribose and hypoxanthine increased gradually post-slaughter but an initial increase in ribose phosphate was not sustained. Most of the potential ribose present in chicken meat, believed to be important for flavor formation, remains bound in the form of inosine and IMP. There is evidence that additional breakdown pathways for ribose and ribose-5-phosphate may deplete the concentrations of these precursors.
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.
Resumo:
Results of recent studies have indicated that bone marrow cells can differentiate into various cells of ectodermal, mesodermal, and endodermal origins when transplanted into the body. However, the problems associated with those experiments such as the long latent period, rareness of the event, and difficulty in controlling the processes have hampered detailed mechanistic studies. In the present study, we examined the potency of mouse bone marrow cells to differentiate into cells comprising skin tissues using a skin reconstitution assay. Bone marrow cells from adult green fluorescent protein (GFP)-transgenic mice were transplanted in a mixture of embryonic mouse skin cells (17.5 days post-coitus) onto skin defects made on the backs of nude mice. Within 3 weeks, fully differentiated skin with hair was reconstituted. GFP-positive cells were found in the epidermis, hair follicles, sebaceous glands, and dermis. The localization and morphology of the cells, results of immunohistochemistry, and results of specific staining confirmed that the bone marrow cells had differentiated into epidermal keratinocytes, sebaceous gland cells, follicular epithelial cells, dendritic cells, and endothelial cells under the present conditions. These results indicate that this system is suitable for molecular and cellular mechanistic studies on differentiation of stem cells to various epidermal and dermal cells.
Resumo:
Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1ß, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2~3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10~30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b macrophages; however, the increment levels were significantly lower than CFB and C3 genes. M1 and M2b macrophage supernatants enhanced CFB (Bb fragment) protein expression and C3 secretion by RPE cells. M1 macrophages may affect complement expression in RPE cells through the STAT1 pathway. Our results suggest that under inflammatory conditions, activated macrophages could promote the alternative pathway of complement activation in the retina via induction of RPE cell CFB and C3 expression.
Resumo:
Stem cells have certain unique characteristics, which include longevity, high capacity of self-renewal with a long cell cycle time and a short S-phase duration, increased potential for error-free proliferation, and poor differentiation. The ocular surface is made up of two distinct types of epithelial cells, constituting the conjunctival and the corneal epithelia. Although anatomically continuous with each other at the corneoscleral limbus, the two cell phenotypes represent quite distinct subpopulations. Stem cells for the cornea reside at the corneoscleral limbus. The limbal palisades of Vogt and the interpalisade rete ridges are believed to be repositories of stem cells. The microenvironment of the limbus is considered to be important in maintaining the stemness of stem cells. Limbal stem cells also act as a 'barrier' to conjunctival epithelial cells and normally prevent them from migrating on to the corneal surface. Under certain conditions, however, the limbal stem cells may be partially or totally depleted, resulting in varying degrees of stem cell deficiency with resulting abnormalities in the corneal surface. Such deficiency of limbal stem cells leads to 'conjunctivalization' of the cornea with vascularization, appearance of goblet cells, and an irregular and unstable epithelium. This results in ocular discomfort and reduced vision. Partial stem cell deficiency can be managed by removing the abnormal epithelium and allowing the denuded cornea, especially the visual axis, to resurface with cells derived from the remaining intact limbal epithelium. In total stem cell deficiency, autologous limbus from the opposite normal eye or homologous limbus from living related or cadaveric donors can be transplanted on to the affected eye. With the latter option, systemic immunosuppression is required. Amniotic membrane transplantation is a useful adjunct to the above procedures in some instances. Copyright (C) 2000 Elsevier Science Inc.
Resumo:
Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.
Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.
Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.
Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK
Resumo:
Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental responses. However, the molecular mechanisms regulating vesicle trafficking remain poorly understood. Here, we report that the evolutionarily conserved caspase-related protease separase (EXTRA SPINDLE POLES [ESP]) is required for the establishment of cell polarity and cytokinesis in Arabidopsis thaliana. At the cellular level, separase colocalizes with microtubules and RabA2a (for RAS GENES FROM RAT BRAINA2a) GTPase-positive structures. Separase facilitates polar targeting of the auxin efflux carrier PIN-FORMED2 (PIN2) to the rootward side of the root cortex cells. Plants with the radially swollen4 (rsw4) allele with compromised separase activity, in addition to mitotic failure, display isotropic cell growth, perturbation of auxin gradient formation, slower gravitropic response in roots, and cytokinetic failure. Measurements of the dynamics of vesicle markers on the cell plate revealed an overall reduction of the delivery rates of KNOLLE and RabA2a GTPase in separase-deficient roots. Furthermore, dissociation of the clathrin light chain, a protein that plays major role in the formation of coated vesicles, was slower in rsw4 than in the control. Our results demonstrate that separase is a key regulator of vesicle trafficking, which is indispensable for cytokinesis and the establishment of cell polarity.
Resumo:
Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA (siRNA)-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs (miRNAs) in human OS cells compared to mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting miRNA in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, while 3UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3 mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel RUNX2-p53-miR34 network controls cell growth of osseous cells and is compromised in OS.
Resumo:
Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.
Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).
Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.
Resumo:
p130(Cas) (crk associated substrate) has the structural characteristics of an adapter protein, containing multiple consensus SH2 binding sites, an SH3 domain, and a proline-rich domain. The structure of p130(Cas) suggests that it may act to provide a framework for protein-protein interactions; however, as yet, its functional role in cells is unknown. In this report we show that p130(Cas) is localized to focal adhesions. We demonstrate that p130(Cas) associates both in vitro and in vivo with pp125(FAK) (focal adhesion kinase), a kinase implicated in signaling by the integrin family of cell adhesion receptors. p130(Cas) also associates with pp41/43(FRNK) (pp125(FAK)-related, non-kinase), an autonomously expressed form of pp125(FAK) composed of only the C-terminal noncatalytic domain. We show that the association of p130(Cas) with pp125(Fak) and pp41/43(FRNK) is direct, and is mediated by the binding of the SH3 domain of p130(Cas) to a proline-rich sequence present in both the C terminus of pp125(FAK) and in pp41/43(FRNK). In agreement with recent studies we show that p130(Cas) is tyrosine-phosphorylated upon integrin mediated cell adhesion. The association of p130(Cas) with pp125(FAK), a kinase which is activated upon cell adhesion, is likely to be functionally important in integrin mediated signal transduction.
Resumo:
Stem and progenitor cells have generated considerable scientific and commercial interest in recent years due to their potential for novel cell therapy for a variety of medical conditions. A highly active research area in the field of regenerative medicine is vascular biology. Blood vessel repair and angiogenesis are key processes with endothelial progenitor cells (EPCs) playing a central role. Clinical trials for ischemic conditions, such as myocardial infarction and peripheral arterial disease, have suggested cell therapies to be feasible, safe, and potentially beneficial. Development of efficient methodologies to deliver EPC-based cytotherapies offers new hope for millions of patients with ischemic conditions. Evidence indicates that EPCs, depending on the subtype, mediate angiogenesis through different mechanisms. Differentiation into endothelium and complete integration into damaged vasculature was the first EPC mechanism to be proposed. However, many studies have demonstrated that vasoregulatory paracrine factor secretion by transplanted cells is also important. Many EPC subsets enhance angiogenesis and promote tissue repair by cytokine release without incorporating into the damaged vasculature. Whatever the mechanism, vascular repair and therapeutic angiogenesis using EPCs represent a realistic treatment option and also provides many commercialization opportunities. This review discusses recent advances in the EPC field whilst recounting relevant patents.
Resumo:
Purpose: To investigate the roles of the CCL2-CCR2 and CX3CL1-CX3CR1 pathways in experimental autoimmune uveoretinitis (EAU)-mediated retinal tissue damage and angiogenesis.
Methods: The C57BL/6J wild-type (WT) and CCL2−/−CX3CR1gfp/gfp (double knockout [DKO]) mice were immunized with IRBP1-20. Retinal inflammation and tissue damage were evaluated clinically and histologically at different days postimmunization (p.i.). Retinal neovascular membranes were evaluated by confocal microscopy of retinal flat mounts, and immune cell infiltration by flow cytometry.
Results: At day 25 p.i., DKO mice had lower clinical and histological scores and fewer CD45highCD11b+ infiltrating cells compared with WT mice. The F4/80+macrophages constitute 40% and 21% and CD11b+Gr-1+Ly6G+ neutrophils constitute 10% and 22% of retinal infiltrating cells in WT and DKO mice, respectively. At the late stages of EAU (day 60–90 p.i.), DKO and WT mice had similar levels of inflammatory score. However, less structural damage and reduced angiogenesis were detected in DKO mice. Neutrophils were rarely detected in the inflamed retina in both WT and DKO mice. Macrophages and myeloid-derived suppressor cells (MDSCs) accounted for 8% and 3% in DKO EAU retina, and 19% and 10% in WT EAU retina; 71% of infiltrating cells were T/B-lymphocytes in DKO EAU retina and 50% in WT EAU retina.
Conclusions: Experimental autoimmune uveoretinitis–mediated retinal tissue damage and angiogenesis is reduced in CCL2−/−CX3CR1gfp/gfp mice. Retinal inflammation is dominated by neutrophils at the acute stage and lymphocytes at the chronic stage in these mice. Our results suggest that CCR2+ and CX3CR1+monocytes are both involved in tissue damage and angiogenesis in EAU.
Resumo:
Porcine circovirus type 2 (PCV2) nucleic acid and/or antigens are consistently observed in cells of monocytic morphology in lesions of pigs affected by post-weaning multisystemic wasting syndrome (PMWS). In this study, PCV2 antigen was detected in the cytoplasm of monocytes, pulmonary macrophages (PMs) and monocyte-derived macrophages exposed to the virus in vitro, by immunofluorescence analysis (IFA) and the phenotype of these cells confirmed by detection of monocytic cell surface markers using flow cytometry. Viral antigen was not observed in lymphocytic cells. Replication of the virus in PMs was investigated further by comparison to that observed in the continuous pig kidney cell line (PK15A) using quantitative virus titration, quantitative PCR and by the detection of double stranded DNA intermediates of viral replication by Southern blotting analyses. Although increases in viral DNA and levels of infectious virus progeny and the presence of replicative intermediates, indicative of viral replication, were observed in PK15A cells, no such changes were observed in PMs in spite of the fact that infectious virus, viral antigen and viral DNA persisted in the cells for at least the duration of the experiment. These results suggest that in vivo, monocytic cells may not represent the primary target for PCV2 replication. (C) 2003 Elsevier B.V. All rights reserved.