989 resultados para charged aerosols


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta contribución se presenta un estudio teórico de diferentes reacciones químicas entre óxidos de iodo y agua que pueden contribuir a la formación de partículas en la atmósfera. Mediante el uso de cálculos quimicocuánticos ab initio con tratamiento de la correlación electrónica se han obtenido propiedades termodinámicas para caracterizar esas reacciones

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymptotic structure of the far-wake behind a charged body in a rarefied plasma flow is investigated under the assumption of small ion-to-electron temperature ratio and of flow speed hypersonic with respect to the ions but not with respect to the electrons. It is found that waves are excited even if the flow is subacoustic (flow velocity less than the ion-acoustic speed). For both superacoustic and subacoustic velocities a steep wave front develops separating the weakly perturbed, quasineutral plasma ahead, from the region behind where ion waves appear. Near the axis a trailing front develops;the region between this and the axis is quasineutral for superacoustic speeds. The decay laws in all of these regions, the self-similar structure of the fronts and the general character of the waves are determined.The damping of the waves and special flow detail for bodies large and small compared with the Debye length are discussed. A nonlinear analysis of the leading wave front in superacoustic flow is carried out. A hyperacoustic equivalence principle is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent study by the authors points to Charged Particle Drag (CPD) as a contributor to revisit in the LAGEOS non-gravitational perturbations problem. Such perturbations must account for dynamical contributions in the order of pms−2 . The simulated effect takes into account: (i) spatial and temporal variations of the plasmatic parameters (temperature and concentration of the species), (ii) spacecraft potential variations caused by both the eclipse passages and variations in the parameters mentioned above, and (iii) solar and geomagnetic conditions. Furthermore, recent theoretical improvements concerning scattering drag overcome previous limitations allowing for a complete formulation of this effect. For each satellite the lifetime CPD instantaneous acceleration is computed. The plasmatic parameters have been obtained fromthe Sheffield Coupled Thermosphere-Ionosphere-Plasmasphere (SCTIP) semi-empirical model (up to the polar region), as well as alytical/empirical approximations based on spacecraft measurements for the auroral and polar regions. Results show that maximum amplitudes for LAGEOSI are larger than those for LAGEOS-II: −85 pms−2 and −70 pms−2 respectively. This is due to the almost (magnetically) polar orbit configuration of the first, producing larger combinations of plasmatic parameter values. High solar activity has a huge impact in the resulting LAGEOS accelerations: it yields a perfect modulation of the resulting acceleration with maximum amplitudes up to a factor of 10 when comparing low and high activity periods. On the other hand, the impact of the geomagnetic activity results into a reduction of the effect itself, probably due to a decrease in the hydrogen concentration for high energy input periods. The acceleration results will be used in a refined orbit computation in a subsequent investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently noticed disagreement between ionospheric charged-particle temperature values obtained from ground-based (incoherent backscatter) and in situ (Langmuir probe type) measurements is considered; it is suggested that a main cause of disagreement lies in the poor theoretical basis of present in situ measurements. It is pointed out that the usually neglected geomagnetic field influence may result in too high an electron temperature. It is also shown that the theory used at present to interpret data from ion retarding potential analyzers has serious pitfalls, and that these devices greatly disturb the surrounding plasma when measuring ion temperature. Finally, it is shown how the ion temperature can be accurately obtained from the characteristic of a cylindrical Langmuir probe in a rarefied plasma flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution, results of a theoretical study on different reactions that odine oxides, in the presence of water, can undergo to form iodine oxides particles in the atmosphere. Thermodynamic and kinetic properties of these reactions have been obtained at high level ab initio correlated calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000 ppm were tested at 20 �C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000 ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000 ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of atmospheric aerosols and regional haze from air pollution on the yields of rice and winter wheat grown in China is assessed. The assessment is based on estimates of aerosol optical depths over China, the effect of these optical depths on the solar irradiance reaching the earth’s surface, and the response of rice and winter wheat grown in Nanjing to the change in solar irradiance. Two sets of aerosol optical depths are presented: one based on a coupled, regional climate/air quality model simulation and the other inferred from solar radiation measurements made over a 12-year period at meteorological stations in China. The model-estimated optical depths are significantly smaller than those derived from observations, perhaps because of errors in one or both sets of optical depths or because the data from the meteorological stations has been affected by local pollution. Radiative transfer calculations using the smaller, model-estimated aerosol optical depths indicate that the so-called “direct effect” of regional haze results in an ≈5–30% reduction in the solar irradiance reaching some of China’s most productive agricultural regions. Crop-response model simulations suggest an ≈1:1 relationship between a percentage increase (decrease) in total surface solar irradiance and a percentage increase (decrease) in the yields of rice and wheat. Collectively, these calculations suggest that regional haze in China is currently depressing optimal yields of ≈70% of the crops grown in China by at least 5–30%. Reducing the severity of regional haze in China through air pollution control could potentially result in a significant increase in crop yields and help the nation meet its growing food demands in the coming decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonribosomal nucleolar protein gar2 is required for 18S rRNA and 40S ribosomal subunit production in Schizosaccharomyces pombe. We have investigated the consequences of the absence of each structural domain of gar2 on cell growth, 18S rRNA production, and nucleolar structure. Deletion of gar2 RNA-binding domains (RBDs) causes stronger inhibition of growth and 18S rRNA accumulation than the absence of the whole protein, suggesting that other factors may be titrated by its remaining N-terminal basic/acidic serine-rich domain. These drastic functional defects correlate with striking nucleolar hypertrophy. Point mutations in the conserved RNP1 motifs of gar2 RBDs supposed to inhibit RNA–protein interactions are sufficient to induce severe nucleolar modifications but only in the presence of the N-terminal domain of the protein. Gar2 and its mutants also distribute differently in glycerol gradients: gar2 lacking its RBDs is found either free or assembled into significantly larger complexes than the wild-type protein. We propose that gar2 helps the assembly on rRNA of factors necessary for 40S subunit synthesis by providing a physical link between them. These factors may be recruited by the N-terminal domain of gar2 and may not be released if interaction of gar2 with rRNA is impaired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out conformational energy calculations on alanine-based copolymers with the sequence Ac-AAAAAXAAAA-NH2 in water, where X stands for lysine or glutamine, to identify the underlying source of stability of alanine-based polypeptides containing charged or highly soluble polar residues in the absence of charge–charge interactions. The results indicate that ionizable or neutral polar residues introduced into the sequence to make them soluble sequester the water away from the CO and NH groups of the backbone, thereby enabling them to form internal hydrogen bonds. This solvation effect dictates the conformational preference and, hence, modifies the conformational propensity of alanine residues. Even though we carried out simulations for specific amino acid sequences, our results provide an understanding of some of the basic principles that govern the process of folding of these short sequences independently of the kind of residues introduced to make them soluble. In addition, we have investigated through simulations the effect of the bulk dielectric constant on the conformational preferences of these peptides. Extensive conformational Monte Carlo searches on terminally blocked 10-mer and 16-mer homopolymers of alanine in the absence of salt were carried out assuming values for the dielectric constant of the solvent ɛ of 80, 40, and 2. Our simulations show a clear tendency of these oligopeptides to augment the α-helix content as the bulk dielectric constant of the solvent is lowered. This behavior is due mainly to a loss of exposure of the CO and NH groups to the aqueous solvent. Experimental evidence indicates that the helical propensity of the amino acids in water shows a dramatic increase on addition of certain alcohols, such us trifluoroethanol. Our results provide a possible explanation of the mechanism by which alcohol/water mixtures affect the free energy of helical alanine oligopeptides relative to nonhelical ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How colloidal particles interact with each other is one of the key issues that determines our ability to interpret experimental results for phase transitions in colloidal dispersions and our ability to apply colloid science to various industrial processes. The long-accepted theories for answering this question have been challenged by results from recent experiments. Herein we show from Monte-Carlo simulations that there is a short-range attractive force between identical macroions in electrolyte solutions containing divalent counterions. Complementing some recent and related results by others, we present strong evidence of attraction between a pair of spherical macroions in the presence of added salt ions for the conditions where the interacting macroion pair is not affected by any other macroions that may be in the solution. This attractive force follows from the internal-energy contribution of counterion mediation. Contrary to conventional expectations, for charged macroions in an electrolyte solution, the entropic force is repulsive at most solution conditions because of localization of small ions in the vicinity of macroions. Both Derjaguin–Landau–Verwey–Overbeek theory and Sogami–Ise theory fail to describe the attractive interactions found in our simulations; the former predicts only repulsive interaction and the latter predicts a long-range attraction that is too weak and occurs at macroion separations that are too large. Our simulations provide fundamental “data” toward an improved theory for the potential of mean force as required for optimum design of new materials including those containing nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistically significant charge clusters (basic, acidic, or of mixed charge) in tertiary protein structures are identified by new methods from a large representative collection of protein structures. About 10% of protein structures show at least one charge cluster, mostly of mixed type involving about equally anionic and cationic residues. Positive charge clusters are very rare. Negative (or histidine-acidic) charge clusters often coordinate calcium, or magnesium or zinc ions [e.g., thermolysin (PDB code: 3tln), mannose-binding protein (2msb), aminopeptidase (1amp)]. Mixed-charge clusters are prominent at interchain contacts where they stabilize quaternary protein formation [e.g., glutathione S-transferase (2gst), catalase (8act), and fructose-1,6-bisphosphate aldolase (1fba)]. They are also involved in protein-protein interaction and in substrate binding. For example, the mixed-charge cluster of aspartate carbamoyl-transferase (8atc) envelops the aspartate carbonyl substrate in a flexible manner (alternating tense and relaxed states) where charge associations can vary from weak to strong. Other proteins with charge clusters include the P450 cytochrome family (BM-3, Terp, Cam), several flavocytochromes, neuraminidase, hemagglutinin, the photosynthetic reaction center, and annexin. In each case in Table 2 we discuss the possible role of the charge clusters with respect to protein structure and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human T-cell-mediated autoimmune diseases are genetically linked to particular alleles of MHC class II genes. Susceptibility to pemphigus vulgaris (PV), an autoimmune disease of the skin, is linked to a rare subtype of HLA-DR4 (DRB1*0402, 1 of 22 known DR4 subtypes). The PV-linked DR4 subtype differs from a rheumatoid arthritis-associated DR4 subtype (DRB1*0404) only at three residues (DR beta 67, 70, and 71). The disease is caused by autoantibodies against desmoglein 3 (DG), and T cells are thought to trigger the autoantibody production against this keratinocyte adhesion molecule. Based on the DRB1*0402 binding motif, seven candidate peptides of the DG autoantigen were identified. T cells from four PV patients with active disease responded to one of these DG peptides (residues 190-204); two patients also responded to DG-(206-220). T-cell clones specific for DG-(190-204) secreted high levels of interleukins 4 and 10, indicating that they may be important in triggering the production of DG-specific autoantibodies. The DG-(190-204) peptide was presented by the disease-linked DRB1*0402 molecule but not by other DR4 subtypes. Site-directed mutagenesis of DRB1*0402 demonstrated that selective presentation of DG-(190-204), which carries a positive charge at the P4 position, was due to the negatively charged residues of the P4 pocket (DR beta 70 and 71). DR beta 71 has a negative charge in DRB1*0402 but a positive charge in other DR4 subtypes, including the DR4 subtypes linked to rheumatoid arthritis. The charge of the P4 pocket in the DR4 peptide binding site therefore appears to be a critical determinant of MHC-linked susceptibility to PV and rheumatoid arthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an element of the voltage sensor. Here, we show that mutations of conserved negatively charged residues in S2 and S3 of a brain K+ channel, thought of as countercharges for the positively charged residues in S4, selectively modulate channel gating without modifying the permeation properties. Mutations of Glu235 in S2 that neutralize or reverse charge increase the probability of channel opening and the apparent gating valence. In contrast, replacements of Glu272 by Arg or Thr268 by Asp in S3 decrease the open probability and the apparent gating valence. Residue Glu225 in S2 tolerated replacement only by acidic residues, whereas Asp258 in S3 was intolerant to any attempted change. These results imply that S2 and S3 are unlikely to be involved in channel lining, yet, together with S4, may be additional components of the voltage-sensing structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The obtention of spontaneous Raman photons is analyzed in singly charged p-doped quantum dots in the absence of an external magnetic field. The use of a far detuned single driving laser allows to obtain a Raman photon line which exhibits subnatural linewidth, and whose center can be tuned by changing the detuning and/or the Rabi frequency of the driving field. The Raman photons are produced along the undriven transition and they arise from the weak interaction of the trion states with the nuclear spins. The operating point for the gate voltage of the heterostructure can also be used to modify the linewidth and the peak value of the fluorescent signal.