897 resultados para central nervous system metastasis
Resumo:
Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4) of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor for glutamate was tested in migraineurs with and without aura (MA and MO) and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450) and GRIA3 (rs3761555) genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively), but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.
Resumo:
Multiple sclerosis (MS) is a serious cause of neurological disability among young adults. The clinical course remains difficult to predict, and the pathogenesis of the disease is still modestly understood. Autoimmunity is thought to be a key aspect of the disease, with autoreactive T cells thought to mediate central nervous system (CNS) inflammation to some extent. Toll-like receptors are known to mediate cellular recognition of pathogens by way of patterns of molecular presentation. Toll-like receptor 3 is coded by the gene TLR3 and is recognized as an important factor in virus recognition and is known to be involved in the expression of neuroprotective mediators. We set out to investigate two variations within the TLR3 gene, an 8 bp insertion-deletion \[-/A](8) and a single base-pair variation C1236T, in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We used capillary gel electrophoresis and TaqMan genotyping assay techniques to resolve genotypes for each marker, respectively. Our work found no significant difference between frequencies for TLR3 \[-/A](8) by genotype (chi(2)=1.03, p=0.60) or allele (chi(2)=1.09, p=0.30). Similarly, we found no evidence for the association of TLR3 C1236T by genotype (chi(2)=0.35, p=0.84) or allele frequency (chi(2)=0.31, p=0.58). This work reveals no evidence to suggest that these markers are associated with MS in the tested population. Although the role of TLR3 and the wider toll-like receptor family remain significant in neurological and CNS inflammatory disorders, our current work does not support a role for the two tested variants in this gene with regard to MS susceptibility.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.
Resumo:
Multiple sclerosis (MS) is a complex neurological disease that affects the central nervous system (CNS) resulting in debilitating neuropathology. Pathogenesis is primarily defined by CNS inflammation and demyelination of nerve axons. Methionine synthase reductase (MTRR) is an enzyme that catalyzes the remethylation of homocysteine (Hcy) to methionine via cobalamin and folate dependant reactions. Cobalamin acts as an intermediate methyl carrier between methylenetetrahydrofolate reductase (MTHFR) and Hcy. MTRR plays a critical role in maintaining cobalamin in an active form and is consequently an important determinant of total plasma Hcy (pHcy) concentrations. Elevated intracellular pHcy levels have been suggested to play a role in CNS dysfunction, neurodegenerative, and cerebrovascular diseases. Our investigation entailed the genotyping of a cohort of 140 cases and matched controls for MTRR and MTHFR, by restriction length polymorphism (RFLP) techniques. Two polymorphisms: MTRR A66G and MTHFR A1298C were investigated in an Australian age and gender matched case-control study. No significant allelic frequency difference was observed between cases and controls at the α = 0.05 level (MTRR χ2 = 0.005, P = 0.95, MTHFR χ2 = 1.15, P = 0.28). Our preliminary findings suggest no association between the MTRR A66G and MTHFR A1298C polymorphisms and MS
Resumo:
Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination. The C677T substitution variant in the methylenetetrahydrofolate reductase (MTHFR) gene has been associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Higher blood levels of homocysteine have also been reported in MS. Thus, the C677T mutation of the MTHFR gene may influence MS susceptibility. Noradrenaline, a neurotransmitter believed to play an immunosupressive role in neuroinflammatory disorders, is catabolized by catechol-O-methyl transferase (COMT). The COMT G158A substitution results in a three- to four-fold decreased activity of the COMT enzyme, which may influence CNS synaptic catecholamine breakdown and could also play a role in MS inflammation. We tested DNA from Australian MS patients and unaffected control subjects, matched for gender, age and ethnicity. Specifically, we genotyped the MTHFR C677T and the COMT G158A mutations. Genotype distributions showed that the homozygous mutant MTHFR genotype (T/T) and the COMT (H/H) genotype were slightly over-represented in the MS group (16% versus 11% and 24% versus 19%, respectively), but both variations failed to reach statistical significance (P=0.15 and P=0.32, respectively). Hence, results from the present study do not support a major role for either functional gene mutation in MS susceptibility.
Resumo:
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population. One hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p(Gen) = 0.016) and interestingly, a stronger difference for the allelic frequency (p(All) = 0.0072). The Apa I alleles were also found to be associated with MS (p(All) = 0.04) but genotype frequencies were not significantly different from controls (p(Gen) = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing the risk of developing multiple sclerosis, particularly the progressive clinical subtypes of MS.
Resumo:
Multiple Sclerosis (MS) is a chronic neurological disease characterized by demyelination associated with infiltrating white blood cells in the central nervous system (CNS). Nitric oxide synthases (NOS) are a family of enzymes that control the production of nitric oxide. It is possible that neuronal NOS could be involved in MS pathophysiology and hence the nNOS gene is a potential candidate for involvement in disease susceptibility. The aim of this study was to determine whether allelic variation at the nNOS gene locus is associated with MS in an Australian cohort. DNA samples obtained from a Caucasian Australian population affected with MS and an unaffected control population, matched for gender, age and ethnicity, were genotyped for a microsatellite polymorphism in the promoter region of the nNOS gene. Allele frequencies were compared using chi-squared based statistical analyses with significance tested by Monte Carlo simulation. Allelic analysis of MS cases and controls produced a chi-squared value of 5.63 with simulated P = 0.96 (OR(max) = 1.41, 95% CI: 0.926-2.15). Similarly, a Mann-Whitney U analysis gave a non-significant P-value of 0.377 for allele distribution. No differences in allele frequencies were observed for gender or clinical course subtype (P > 0.05). Statistical analysis indicated that there is no association of this nNOS variant and MS and hence the gene does not appear to play a genetically significant role in disease susceptibility.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) affecting most commonly the Caucasian population. Nitric oxide (NO) is a biological signaling and effector molecule and is especially important during inflammation. Inducible nitric oxide synthase (iNOS) is one of the three enzymes responsible for generating NO. It has been reported that there is an excessive production of NO in MS concordant with an increased expression of iNOS in MS lesions. This study investigated the role of a bi-allelic tetranucleotide polymorphism located in the promoter region of the human iNOS (NOS2A) gene in MS susceptibility. A group of MS patients (n = 101) were genotyped and compared to an age- and sex-matched group of healthy controls (n = 101). The MS group was subdivided into three subtypes, namely relapsing-remitting MS (RR-MS), secondary-progressive MS (SP-MS) and primary-progressive MS (PP-MS). Results of a chi-squared analysis and a Fisher's exact test revealed that allele and genotype distributions between cases and controls were not significantly different for the total population (chi(2) = 3.4, P(genotype) = 0.15; chi(2) = 3.4, P(allele) = 0.082) and for each subtype of MS (P > 0.05). This suggests that there is no direct association of this iNOS gene variant with MS susceptibility.
Resumo:
The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.
Resumo:
Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.
Resumo:
Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.
Resumo:
Nedd4-2, a HECT (homologous with E6-associated protein C-terminus)-type ubiquitin protein ligase, has been implicated in regulating several ion channels, including Navs (voltage-gated sodium channels). In Xenopus oocytes Nedd4-2 strongly inhibits the activity of multiple Navs. However, the conditions under which Nedd4-2 mediates native Nav regulation remain uncharacterized. Using Nedd4-2-deficient mice, we demonstrate in the present study that in foetal cortical neurons Nedd4-2 regulates Navs specifically in response to elevated intracellular Na(+), but does not affect steady-state Nav activity. In dorsal root ganglia neurons from the same mice, however, Nedd4-2 does not control Nav activities. The results of the present study provide the first physiological evidence for an essential function of Nedd4-2 in regulating Navs in the central nervous system.
Resumo:
Background Migraine is a brain disorder affecting ∼12% of the Caucasian population. Genes involved in neurological, vascular, and hormonal pathways have all been implicated in predisposing individuals to developing migraine. The migraineur presents with disabling head pain and varying symptoms of nausea, emesis, photophobia, phonophobia, and occasionally visual sensory disturbances. Biochemical and genetic studies have demonstrated dysfunction of neurotransmitters: serotonin, dopamine, and glutamate in migraine susceptibility. Glutamate mediates the transmission of excitatory signals in the mammalian central nervous system that affect normal brain function including cognition, memory and learning. The aim of this study was to investigate polymorphisms in the GRIA2 and GRIA4 genes, which encode subunits of the ionotropic AMPA receptor for association in an Australian Caucasian population. Methods Genotypes for each polymorphism were determined using high resolution melt analysis and the RFLP method. Results Statistical analysis showed no association between migraine and the GRIA2 and GRIA4 polymorphisms investigated. Conclusions Although the results of this study showed no significant association between the tested GRIA gene variants and migraine in our Australian Caucasian population further investigation of other components of the glutamatergic system may help to elucidate if there is a relationship between glutamatergic dysfunction and migraine.
Resumo:
A number of observations have suggested that brain derived neurotrophic factor (BDNF) plays a role in migraine pathophysiology. This study investigates whether variants in the BDNF gene are associated with migraine in an Australian case-control population. Background. Brain derived neurotrophic factor (BDNF) has an important role in neural growth, development and survival in the central nervous system and is an important modulator of central and peripheral pain responses. Variants in BDNF, in particular the functional Val66Met polymorphism (rs6265), have been found to be associated with a number of psychiatric disorders, cognitive function and obesity. As BDNF has been found to be differentially expressed in a number of aspects related to migraine, we tested for association between single nucleotide polymorphisms (SNPs) in BDNF and migraine. Methods. Five SNPs in the BDNF locus (rs1519480, rs6265, rs712507, rs2049046 and rs12273363) were genotyped initially in a cohort of 277 migraine cases, including 172 diagnosed with migraine with aura (MA) and 105 with migraine without aura (MO), and 277 age- and sex-matched controls. Three of these SNPs (rs6265, rs2049046 and rs12273363) were subsequently genotyped in a second cohort of 580 migraineurs, including 473 diagnosed with MA and 105 with O, and 580 matched controls. Results. – BDNF SNPs rs1519480, rs6265, rs712507 and rs12273363 were not significantly associated with migraine. However, rs2049046 showed a significant association with migraine, and in particular, MA in the first cohort. In the second cohort, although an increase in the rs2049046 T-allele frequency was observed in migraine cases, and in both MA and MO subgroups, it was not significantly different from controls. Analysis of data combined from both cohorts for rs2049046 showed significant differences in the genotypic and allelic distributions for this marker in both migraine and the MA sub-group. Conclusion. This study confirmed previous studies that the functional BDNF SNP rs6265 (Val66Met) is not associated with migraine. However, we found that rs2049046, which resides at the 5’ end of 3 one the BDNF transcripts, may be associated with migraine, suggesting that further investigations of this SNP may be warranted.