958 resultados para cause specific survival


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infectious diseases after solid organ transplantation (SOT) are a significant cause of morbidity and reduced allograft and patient survival; however, the influence of infection on the development of chronic allograft dysfunction has not been completely delineated. Some viral infections appear to affect allograft function by both inducing direct tissue damage and immunologically related injury, including acute rejection. In particular, this has been observed for cytomegalovirus (CMV) infection in all SOT recipients and for BK virus infection in kidney transplant recipients, for community-acquired respiratory viruses in lung transplant recipients, and for hepatitis C virus in liver transplant recipients. The impact of bacterial and fungal infections is less clear, but bacterial urinary tract infections and respiratory tract colonization by Pseudomonas aeruginosa and Aspergillus spp appear to be correlated with higher rates of chronic allograft dysfunction in kidney and lung transplant recipients, respectively. Evidence supports the beneficial effects of the use of antiviral prophylaxis for CMV in improving allograft function and survival in SOT recipients. Nevertheless, there is still a need for prospective interventional trials assessing the potential effects of preventive and therapeutic strategies against bacterial and fungal infection for reducing or delaying the development of chronic allograft dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report two unrelated patients with a multisystem disease involving liver, eye, immune system, connective tissue, and bone, caused by biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene. Both presented as infants with recurrent episodes triggered by fever with vomiting, dehydration, and elevated transaminases. They had frequent infections, hypogammaglobulinemia, reduced natural killer cells, and the Pelger-Huët anomaly of their granulocytes. Their facial features were similar with a pointed chin and proptosis; loose skin and reduced subcutaneous fat gave them a progeroid appearance. Skeletal features included short stature, slender bones, epiphyseal dysplasia with multiple phalangeal pseudo-epiphyses, and small C1-C2 vertebrae causing cervical instability and myelopathy. Retinal dystrophy and optic atrophy were present in one patient. NBAS is a component of the synthaxin-18 complex and is involved in nonsense-mediated mRNA decay control. Putative loss-of-function mutations in NBAS are already known to cause disease in humans. A specific founder mutation has been associated with short stature, optic nerve atrophy and Pelger-Huët anomaly of granulocytes (SOPH) in the Siberian Yakut population. A more recent report associates NBAS mutations with recurrent acute liver failure in infancy in a group of patients of European descent. Our observations indicate that the phenotypic spectrum of NBAS deficiency is wider than previously known and includes skeletal, hepatic, metabolic, and immunologic aspects. Early recognition of the skeletal phenotype is important for preventive management of cervical instability. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notre système immunitaire joue un rôle important pour la protection envers les maladies infectieuses. Au cours d'une réponse à une infection primaire, des cellules B et des cellules T spécifiques, dirigées contre le pathogène en question, sont générées et certaines d'entre elles deviennent des cellules dites mémoires. Leur fonction est de nous protéger contre une nouvelle infection avec le même pathogène, une infection secondaire. Dans certaines situations, comme c'est par exemple le cas avec la grippe, les pathogènes ne sont pas toujours complètement identiques et les cellules mémoires ne sont pas à même d'assurer leur rôle protecteur et d'empêcher une réinfection. Pourtant, on ne sait à l'heure actuelle que très peu comment une immunité acquise, mais non protectrice, influence le développement d'une réponse immunitaire ultérieure. Dans la première partie de cette thèse, nous avons étudié comment les cellules T mémoires cytotoxiques altèrent la réponse de cellules T cytotoxiques nouvellement induites. Au cours d'une réaction immunitaire dirigée contre une infection primaire, un vaste répertoire de lymphocytes T est créé, constitué de cellules T possédant divers degrés d'affinité pour le pathogène. Lors d'une infection secondaire, seules les cellules T ayant une forte affinité pour le pathogène participent à la réponse. Nous avons pu démontrer que ce phénomène de restriction du répertoire des cellules T est principalement causé par les cellules T mémoires qui sont à même de reconnaître un antigène pathogénique présent dans les deux infections. Dans un deuxième projet, nous avons étudié comment l'absence de PTPN2 influence la réponse des cellules T. Chez l'homme, une mutation dans le gène de PTPN2 est associée à des maladies auto-immunes et résulte en une activité réduite de cette phosphatase dans les lymphocytes T. Nous avons montré que la baisse d'activité de la phosphatase PTNP2 conduit à une meilleure expansion des cellules T ayant une qualité comparable à des cellules T auto-antigène spécifiques. De plus, nous avons observé que la survie de ces cellules T effectues ayant une phosphatase diminuée est nettement améliorée. Cela peut conduire à une réponse immunitaire plus efficace ou, éventuellement, à une pathologie auto-immune plus grave. En outre, nos résultats montrent qu'en manipulant l'activité de cette phosphatase, il est possible d'augmenter l'efficacité du transfert des cellules T dans un hôte receveur. Un tel transfert de cellules T est pratiqué chez des patients atteints de tumeurs. Nos travaux suggèrent que la manipulation de la phosphatase PTPN2 pourrait donc représenter une approche thérapeutique novatrice et prometteuse. -- Notre système immunitaire joue un rôle important pour la protection contre les maladies. Les cellules T CD8+ ont une importance primordiale pour le contrôle d'infections primaires causées par des virus ou bactéries, mais également contre certaines tumeurs. Par conséquent, mieux comprendre les exigences nécessaires à l'induction de bonnes réponses des cellules T CD8 pourrait nous permettre de construire des vaccins contre les pathogènes contre lesquels nous n'avons pour l'instant pas de vaccins mais aussi d'améliorer les réactions immunitaires dirigées anti-tumorales. Dans la première partie de cette thèse, nous avons étudié l'influence qu'une immunité préexistante a sur la réponse des cellules T CD8. Nous sommes souvent exposés à des pathogènes qui sont similaires mais pas identiques à ceux que nous avons rencontrés auparavant. De telles infections hétérologues ne sont pas l'objet de beaucoup d'études et certains exemples indiquent même qu'une immunité préexistante partielle peut mener à une aggravation de la maladie. Nous avons étudié le répertoire des lymphocytes T CD8 qui sont générés lors d'une rencontre avec un nouvel antigène, et ce en comparant infection primaire et secondaire. En utilisant le modèle expérimental d'infections à Listeria monocytogenes, nous avons pu montrer que lors d'une infection primaire, un répertoire diversifié comprenant des cellules T CD8 de forte et faible affinité est constitué. Au contraire, dans le cas d'une infection secondaire, le répertoire des cellules T est fortement limité et seulement les lymphocytes T de forte affinité sont impliqués dans la réponse immunitaire. Nous avons pu démontrer que ces Rangements sont provoqués par des cellules T CD8 mémoires capables de reconnaître un antigène présent dans les deux infections. Cette augmentation du seuil d'activation des cellules effectrices est majoritairement causée par les lymphocytes T CD8 mémoires non transférables. Ces observations indiquent que les vaccins visant à induire des cellules T anti-tumorales de faible affinité seraient inefficaces si le vaccin contient des épitopes contre lesquels il existe une mémoire immunologique. Les réponses immunitaires conduites par les cellules T contre les antigènes tumoraux dépendent des cellules T CD8 de faible réactivité contre les antigènes tumoraux puisque les cellules à forte réactivité sont éliminées par les mécanismes de tolérance. Nous basant sur l'existence dans la littérature de preuves indiquant que PTPN2 influence la réponse des cellules T de faible affinité, nous nous sommes intéressés à comprendre comment PTPN2 impacte les réponses des cellules T CD8 en général. Nous avons remarqué que des cellules T CD8 déficientes en PTPN2 exhibent une meilleure capacité à proliférer suite à une faible ou courte stimulation du récepteur des lymphocytes T. La phase effectrice est prolongée et la contraction retardée résultant ainsi à globalement plus de cellules effectrices. Ce phénomène est également accompagné d'une meilleure survie des cellules effectrices de différentiation terminale. Une fois transférées dans un nouvel hôte receveur, les cellules effectrices terminales KLRG1+CD127- déficientes en phosphatase PTPN2 peuvent survivre et se transformer en cellules mémoires CD127+ fonctionnelles. De façon inattendue, nous avons découvert que l'élimination de PTPN2 améliore l'efficacité du transfert et la formation des cellules mémoires ainsi que leur capacité protectrice. Manipuler l'activité de cette phosphatase apparaît donc comme une approche intéressante et prometteuse pour la thérapie cellulaire par transfert adoptif de lymphocytes T. Nos observations montrent que la manipulation d'un facteur intrinsèque, l'absence de PTPN2, peut, dans certaines circonstances, améliorer la réponse des cellules T. Une meilleure connaissance des mécanismes contrôlant la réponse des lymphocytes T CD8 pourrait donc permettre la manipulation de ces derniers et conduire à des réponses immunitaires plus vigoureuses. Si ces réponses sont déclenchées par l'utilisation de vaccins, il est nécessaire de considérer l'historique d'une exposition préalable à des agents pathogènes ou à des vaccins puisque celle-ci peut, comme nous l'avons démontré, influencer le répertoire des cellules T recrutées dans la réponse immunitaire et, par conséquent, modifier l'aptitude de notre système immunitaire à faire face à une infection. -- Our immune system plays an important role in the protection from disease. CD8 T cells are critical for the control of primary infections with most viruses and certain bacteria as well as against some tumors. Therefore, better knowledge of CD8 T cell responses might enable us to generate vaccines against pathogens for which currently no vaccines are available or to improve anti-tumor immune responses. In the first part of this thesis we addressed the issue how previously acquired immunity impacts on the response of CD8 T cells. We are often exposed to pathogens that are related but not identical to the previously encountered ones. Such heterologous infections are not well studied and there are some indications that partial pre-existing immunity may in some cases even lead to an enhancement of disease. We specifically studied the T cell repertoire of CD8 T cells that are responding to a newly encountered antigen in secondary compared to primary infections. Using the experimental model of Listeria monocytogenes infections, we showed that in primary infections a wide repertoire including high and low affinity CD8 T cells is recruited into the immune response. In contrast to this, in secondary infections, the T cell repertoire is severely restricted and only T cells of high affinity are responding. We were able to pinpoint this difference to the presence of memory CD8 T cells that recognize an antigen that is shared between the two subsequent infections. This increase in the activation threshold was most effectively mediated via non-transferable memory CD8 T cells. This would argue that vaccines targeting low affinity tumor-specific T cells would fail if the vaccine contains previously encountered CD8 T cell epitopes. T cell mediated immune responses to tumor antigen rely often on T cells which weakly react to tumor antigen as high affinity T cells are eliminated by tolerance mechanisms. Following indication in the literature that PTPN2 impacts on the response of such weakly antigen-reactive T cells, we investigated how PTPN2 impacts in general the response of CD8 T cells. We observed that CD8 T cells lacking PTPN2 show an enhanced expansion following weak or short-term T cell receptor stimulation. The effector phase is prolonged and contraction delayed thus resulting in overall more effector cells. This is accompanied by a better survival of terminal effector cells. When transferred into new recipients, KLRG1+CD127- terminal effector cells lacking PTPN2 can survive and convert into CD127+ functional memory cells. Surprisingly, we discovered that elimination of PTPN2 enhances the transfer efficacy and formation of memory cells as well as the protective capacity. Targeting PTPN2 might thus be a promising approach for adoptive T cell therapy. Our observations show how the manipulation of an intrinsic factor, the absence of PTPN2, can enhance T cell responses under certain circumstances. A better understanding of underlying mechanisms for the control of CDS T cell responses might enable the manipulation of these and allow for more powerful responses. If these responses are induced through vaccines it is imperative that the previous history of exposure to pathogens or vaccines is considered as it can, as we have shown in this thesis, influence the recruited T cell repertoire and thus possibly the ability to handle the infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia psittaci and Chlamydia abortus are closely related intracellular bacteria exhibiting different tissue tropism that may cause severe but distinct infection in humans. C. psittaci causes psittacosis, a respiratory zoonotic infection transmitted by birds. C. abortus is an abortigenic agent in small ruminants, which can also colonize the human placenta and lead to foetal death and miscarriage. Infections caused by C. psittaci and C. abortus are underestimated mainly due to diagnosis difficulties resulting from their strict intracellular growth. We developed a duplex real-time PCR to detect and distinguish these two bacteria in clinical samples. The first PCR (PCR1) targeted a sequence of the 16S-23S rRNA operon allowing the detection of both C. psittaci and C. abortus. The second PCR (PCR2) targeted the coding DNA sequence CPSIT_0607 unique to C. psittaci. The two PCRs showed 100 % detection for ≥ 10 DNA copies per reaction (1000 copies ml- 1). Using a set of 120 samples, including bacterial reference strains, clinical specimens and infected cell culture material, we monitored 100 % sensitivity and 100 % specificity for the detection of C. psittaci and C. abortus for PCR1. When PCR1 was positive, PCR2 could discriminate C. psittaci from C. abortus with a positive predictive value of 100 % and a negative predictive value of 88 %. In conclusion, this new duplex PCR represents a low-cost and time-saving method with high-throughput potential, expected to improve the routine diagnosis of psittacosis and pregnancy complication in large-scale screening programs and also during outbreaks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waddlia chondrophila, an obligate intracellular bacterium of the Chlamydiales order, is considered as an agent of bovine abortion and a likely cause of miscarriage in humans. Its role in respiratory diseases was questioned after the detection of its DNA in clinical samples taken from patients suffering from pneumonia or bronchiolitis. To better define the role of Waddlia in both miscarriage and pneumonia, a tool allowing large-scale serological investigations of Waddlia seropositivity is needed. Therefore, enriched outer membrane proteins of W. chondrophila were used as antigens to develop a specific ELISA. After thorough analytical optimization, the ELISA was validated by comparison with micro-immunofluorescence and it showed a sensitivity above 85% with 100% specificity. The ELISA was subsequently applied to human sera to specify the role of W. chondrophila in pneumonia. Overall, 3.6% of children showed antibody reactivity against W. chondrophila but no significant difference was observed between children with and without pneumonia. Proteomic analyses were then performed using mass spectrometry, highlighting members of the outer membrane protein family as the dominant proteins. The major Waddlia putative immunogenic proteins were identified by immunoblot using positive and negative human sera. The new ELISA represents an efficient tool with high throughput applications. Although no association with pneumonia and Waddlia seropositivity was observed, this ELISA could be used to specify the role of W. chondrophila in miscarriage and in other diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The underlying cause of many human autoimmune diseases is unknown, but several environmental factors are implicated in triggering the self-destructive immune reactions. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, potentially leading to persistent neurological deterioration. The cause of MS is not known, and apart from immunomodulatory treatments there is no cure. In the early phase of the disease, relapsing-remitting MS (RR-MS) is characterized by unpredictable exacerbations of the neurological symptoms called relapses, which can occur at different intervals ranging from 4 weeks to several years. Microbial infections are known to be able to trigger MS relapses, and the patients are instructed to avoid all factors that might increase the risk of infections and to properly use antibiotics as well as to take care of dental hygiene. Among those environmental factors which are known to increase susceptibility to infections, high ambient air inhalable particulate matter levels affect all people within a geographical region. During the period of interest in this thesis, the occurrence of MS relapses could be effectively reduced by injections of interferon, which has immunomodulatory and antiviral properties. In this thesis, ecological and epidemiological analyses were used to study the possible connection between MS relapse occurrence, population level viral infections and air quality factors, as well as the effects of interferon medication. Hospital archive data were collected retrospectively from 1986-2001, a period in time ranging from when interferon medication first became available until just before other disease-modifying MS therapies arrived on the market. The grouped data were studied with logistic regression and intervention analysis, and individual patient data with survival analysis. Interferons proved to be effective in the treatment of MS in this observational study, as the amount of MS exacerbations was lower during interferon use as compared to the time before interferon treatment. A statistically significant temporal relationship between MS relapses and inhalable particular matter (PM10) concentrations was found in this study, which implies that MS patients are affected by the exposure to PM10. Interferon probably protected against the effect of PM10, because a significant increase in the risk of exacerbations was only observed in MS patients without interferon medication following environmental exposure to population level specific viral infections and PM10. Apart from being antiviral, interferon could thus also attenuate the enhancement of immune reactions caused by ambient air PM10. The retrospective approach utilizing carefully constructed hospital records proved to be an economical and reliable source of MS disease information for statistical analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metastases are the major cause of cancer deaths. Tumor cell dissemination from the primary tumor utilizes dysregulated cellular adhesion and upregulated proteolytic degradation of the extracellular matrix for progeny formation in distant organs. Integrins are transmembrane adhesive receptors mediating cellcell and cellmatrix interactions that are crucial for regulating cell migration, invasion, proliferation, and survival. Consequently, increased integrin activity is associated with augmented migration and invasion capacity in several cancer types. Heterodimeric integrins consist of an alpha - and beta-subunit that are held together in a bent conformation when the receptor is inactive, but extension and separation of subdomains is observed during receptor activation. Either inside-out or outside-in activation of receptors is possible through the intracellular molecule binding to an integrin cytoplasmic domain or extracellular ligand association with an integrin ectodomain, respectively. Several regulatory binding partners have been characterized for integrin cytoplasmic beta-domains, but the regulators interacting with the cytoplasmic alpha-domains have remained elusive. In this study, we performed yeast two-hybrid screens to identify novel binding partners for the cytoplasmic integrin alpha-domains. Further examination of two plausible candidates revealed a significant coregulatory role of an integrin alpha-subunit for cellular signaling processes. T-cell protein tyrosine phosphatase (TCPTP) showed a specific interaction with the cytoplasmic tail of integrin alpha1. This association stimulated TCPTP phosphatase activity, leading to negative regulation of epidermal growth factor receptor (EGFR) signaling and diminished anchorage-independent growth. Another candidate, mammary-derived growth inhibitor (MDGI), exhibited binding to several different integrin cytoplasmic alpha-tails through a conserved GFFKR sequence. MDGI overexpression in breast cancer cells altered EGFR trafficking and caused a remarkable accumulation of EGFR in the cytoplasm. We further demonstrated in vivo that MDGI expression induced a novel form of anti-EGFR therapy resistance. Moreover, MDGI binding to α-tails retained integrin in an inactive conformation attenuating integrin-mediated adhesion, migration, and invasion. In agreement with these results, sustained MDGI expression in breast cancer patients correlated with an increased 10-year distant disease-free survival. Taken together, the integrin signaling network is far from a complete view and future work will doubtless broaden our understanding further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In Finland, breast cancer (BC) is the most common cancer among women, and prostate cancer (PC) that among men. At the metastatic stage both cancers remain essentially incurable. The goals of therapy include palliation of symptoms, improvement or maintenance of quality of life (QoL), delay of disease progression, and prolongation of survival. Balancing between efficacy and toxicity is the major challenge. With increasing costs of new treatments, appropriate use of resources is paramount. When new treatment regimes are introduced into clinical practice a comprehensive assessment of clinical benefit, adverse effects and cost is necessary. Both BC and PC show a predilection to metastasize to bone. Bone metastases cause significant morbidity impairing the patients´ QoL. Diagnosis of bone metastases relies mainly on radiological methods, which however lack optimal sensitivity and specificity. New tools are needed for detection and follow-up of bone metastases. Aims: Anthracyclines and taxanes are effective chemotherapeutic agents in the treatment of metastatic breast cancer (MBC) with different mechanisms of action. Therefore, evaluation of the combination of anthracyclines with taxanes was a justifiable approach in the treatment of MBC patients. We assessed the efficacy, toxicity, cost of treatment and QoL of BC patients treated with first-line chemotherapy for metastatic disease with the combination epirubicin and docetaxel. We also evaluated the diagnostic potential of tartrate-resistant acid phosphatase 5b (TRACP 5b) and carboxyterminal telopeptides of type I collagen (ICTP) in the diagnosis of bone metastases in BC and TRACP 5b in PC patients. Results: The combination of epirubicin and docetaxel was effective in this phase II study, but required individual dose adjustment to avoid neutropenic infections, and the use of growth factors to maintain a feasible dose level. The response rate was 54 % (95 % CI 37-71) and the median overall survival (OS) was 26 months. Of the patients, 87 % were treated for infections. The treatment of adverse events required additional use of health resources mainly due to neutropenic infections, thereby raising direct treatment costs by 20 %. Despite adverse events, the global QoL was not significantly compromised during the treatment. Clinically evident acute cardiac toxicity was not observed. The combination of serum TRACP 5b and ICTP was at least equally sensitive and specific in detection of of bone metastases as commonly used total alkaline phosphatise (tALP) in BC patients. In contrast, TRACP 5b was less specific and sensitive than tALP as a marker of skeletal changes in PC patients. Conclusions: Treatment with epirubicin and docetaxel showed high efficacy in first-line chemotherapy of MBC. The relatively high incidence of neutropenic infections requiring hospitalization increased the treatment costs. Despite adverse events, the global QoL of the patients was not significantly compromised. The combination of TRACP 5b and ICTP showed similar activity as tALP in detecting bone metastases in MBC. In contrast, TRACP 5b was less specific and sensitive than tALP as a marker of skeletal changes in PC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate-specific antigen (PSA) is a marker that is commonly used in estimating prostate cancer risk. Prostate cancer is usually a slowly progressing disease, which might not cause any symptoms whatsoever. Nevertheless, some cases of cancer are aggressive and need to be treated before they become life-threatening. However, the blood PSA concentration may rise also in benign prostate diseases and using a single total PSA (tPSA) measurement to guide the decision on further examinations leads to many unnecessary biopsies, over-detection, and overtreatment of indolent cancers which would not require treatment. Therefore, there is a need for markers that would better separate cancer from benign disorders, and would also predict cancer aggressiveness. The aim of this study was to evaluate whether intact and nicked forms of free PSA (fPSA-I and fPSA-N) or human kallikrein-related peptidase 2 (hK2) could serve as new tools in estimating prostate cancer risk. First, the immunoassays for fPSA-I and free and total hK2 were optimized so that they would be less prone to assay interference caused by interfering factors present in some blood samples. The optimized assays were shown to work well and were used to study the marker concentrations in the clinical sample panels. The marker levels were measured from preoperative blood samples of prostate cancer patients scheduled for radical prostatectomy. The association of the markers with the cancer stage and grade was studied. It was found that among all tested markers and their combinations especially the ratio of fPSA-N to tPSA and ratio of free PSA (fPSA) to tPSA were associated with both cancer stage and grade. They might be useful in predicting the cancer aggressiveness, but further follow-up studies are necessary to fully evaluate the significance of the markers in this clinical setting. The markers tPSA, fPSA, fPSA-I and hK2 were combined in a statistical model which was previously shown to be able to reduce unnecessary biopsies when applied to large screening cohorts of men with elevated tPSA. The discriminative accuracy of this model was compared to models based on established clinical predictors in reference to biopsy outcome. The kallikrein model and the calculated fPSA-N concentrations (fPSA minus fPSA-I) correlated with the prostate volume and the model, when compared to the clinical models, predicted prostate cancer in biopsy equally well. Hence, the measurement of kallikreins in a blood sample could be used to replace the volume measurement which is time-consuming, needs instrumentation and skilled personnel and is an uncomfortable procedure. Overall, the model could simplify the estimation of prostate cancer risk. Finally, as the fPSA-N seems to be an interesting new marker, a direct immunoassay for measuring fPSA-N concentrations was developed. The analytical performance was acceptable, but the rather complicated assay protocol needs to be improved until it can be used for measuring large sample panels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most advanced tumours face periods of reduced oxygen availability i.e. hypoxia. During these periods tumour cells undergo adaptive changes enabling their survival under adverse conditions. In cancer hypoxia-induced cellular changes cause tumour progression, hinder cancer treatment and are indicative of poor prognosis. Within cells the main regulator of hypoxic responses is the hypoxia-inducible factor (HIF). HIF governs the expression of over a hundred hypoxia-inducible genes that regulate a number of cellular functions such as angiogenesis, glucose metabolism and cell migration. Therefore the activity of HIF must be tightly governed. HIF is regulated by a family of prolyl hydroxylase enzymes, PHDs, which mark HIF for destruction in normoxia. Under hypoxic conditions PHDs lose much of their enzymatic activity as they need molecular oxygen as a cofactor. Out of the three PHDs (PHD1, 2 and 3) PHD2 has been considered to be the main HIF-1 regulator in normoxic conditions. PHD3 on the other hand shows the most robust induction in response to oxygen deprivation and it has been implied as the main HIF-1 regulator under prolonged hypoxia. SQSTM1/p62 (p62) is an adaptor protein that functions through its binding motifs to bring together proteins in order to regulate signal transduction. In non-stressed situations p62 levels are kept low but its expression has been reported to be upregulated in many cancers. It has a definitive role as an autophagy receptor and as such it serves a key function in cancer cell survival decisions. In my thesis work I evaluated the significance of PHD3 in cancer cell and tumour biology. My results revealed that PHD3 has a dual role in cancer cell fate. First, I demonstrated that PHD3 forms subcellular protein aggregates in oxygenated carcinoma cells and that this aggregation promotes apoptosis induction in a subset of cancer cells. In these aggregates an adaptor protein SQSTM1/p62 interacts with PHD3 and in so doing regulates PHD3 expression. SQSTM1/p62 expression is needed to keep PHD3 levels low in normoxic conditions. Its levels rapidly decrease in response to hypoxia allowing PHD3 protein levels to be upregulated and the protein to be diffusely expressed throughout the cell. The interaction between PHD3 and SQSTM1/p62 limits the ability of PHD3 to function on its hydroxylation target protein HIF-1alpha. Second, the results indicate that when PHD3 is upregulated under hypoxia it protects cancer cells by allowing cell cycle to proceed from G1 to S-phase. My data demonstrates that PHD3 may either cause cell death or protect the cells depending on its expression pattern and the oxygen availability of tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac troponin (cTn) I and T are the recommended biomarkers for the diagnosis and risk stratification of patients with suspected acute coronary syndrome (ACS), a major cause of cardiovascular death and disability worldwide. It has recently been demonstrated that cTn-specific autoantibodies (cTnAAb) can negatively interfere with cTnI detection by immunoassays to the extent that cTnAAb-positive patients may be falsely designated as cTnI-negative. The aim of this thesis was to develop and optimize immunoassays for the detection of both cTnI and cTnAAb, which would eventually enable exploring the clinical impact of these autoantibodies on cTnI testing and subsequent patient management. The extent of cTnAAb interference in different cTnI assay configurations and the molecular characteristics of cTnAAbs were investigated in publications I and II, respectively. The findings showed that cTnI midfragment targeting immunoassays used predominantly in clinical practice are affected by cTnAAb interference which can be circumvented by using a novel 3+1-type assay design with three capture antibodies against the N-terminus, midfragment and C-terminus and one tracer antibody against the C-terminus. The use of this assay configuration was further supported by the epitope specificity study, which showed that although the midfragment is most commonly targeted by cTnAAbs, the interference basically encompasses the whole molecule, and there may be remarkable individual variation at the affected sites. In publications III and IV, all the data obtained in previous studies were utilized to develop an improved version of an existing cTnAAb assay and a sensitive cTnI assay free of this specific analytical interference. The results of the thesis showed that approximately one in 10 patients with suspected ACS have detectable amounts of cTnAAbs in their circulation and that cTnAAbs can inhibit cTnI determination when targeted against the binding sites of assay antibodies used in its immunological detection. In the light of these observations, the risk of clinical misclassification caused by the presence of cTnAAbs remains a valid and reasonable concern. Because the titers, affinities and epitope specificities of cTnAAbs and the concentration of endogenous cTnI determine the final effect of circulating cTnAAbs, appropriately sized studies on their clinical significance are warranted. The new cTnI and cTnAAb assays could serve as analytical tools for establishing the impact of cTnAAbs on cTnI testing and also for unraveling the etiology of cTn-related autoimmune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucokinase (GCK) is an enzyme that regulates insulin secretion, keeping glucose levels within a narrow range. Mutations in the glucokinase gene cause a rare form of diabetes called maturity-onset diabetes of the young (MODY). An early onset (less than 25 years), autosomal dominant inheritance and low insulin secretion stimulated by glucose characterize MODY patients. Specific insulin and proinsulin were measured in serum by immunofluorimetric assays (IFMA) during a 75-g oral glucose tolerance test (OGTT). Two kindreds (SA and LZ) were studied and compared to non-diabetic unrelated individuals (control group 1) matched for age and body mass index (BMI). In one kindred, some of these subjects were also obese (BMI >26 kg/m2), and other family members also presented with obesity and/or late-onset NIDDM. The MODY patients were also compared to a group of five of their first-degree relatives with obesity and/or late-onset NIDDM. The proinsulin profile was different in members of the two MODY kindreds. Fasting proinsulin and the proinsulin/insulin ratio were similar in MODY members of kindred LZ and subjects from control group 1, but were significantly lower than in MODY members of kindred SA (P<0.02 and P<0.01, for proinsulin and proinsulin/insulin ratio, respectively). Moreover, MODY members of family SA had higher levels of proinsulin and proinsulin/insulin ratio, although not significantly different, when compared to their first-degree relatives and to subjects from control group 2. In conclusion, we observed variable degrees of proinsulin levels and proinsulin/insulin ratio in MODY members of two different kindreds. The higher values of these parameters found in MODY and non-MODY members of kindred SA is probably related to the obesity and late-onset NIDDM background present in this family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homozygous sickle cell disease (SCD) has a wide spectrum of clinical manifestations. In Brazil, the main cause of death of individuals with SCD is recurrent infection. The CCR5delta32 allele, which confers relative resistance to macrophage-tropic HIV virus infection, probably has reached its frequency and world distribution due to other pathogens that target macrophage in European populations. In the present investigation a relatively higher prevalence (5.1%) of the CCR5delta32 allele was identified, by PCR amplification using specific primers, in 79 SCD patients when compared to healthy controls (1.3%) with the same ethnic background (Afro-Brazilians). Based on a hypothesis that considers SCD as a chronic inflammatory condition, and since the CCR5 chemokine receptor is involved in directing a Th1-type immune response, we suggest that a Th1/Th2 balance can influence the morbidity of SCD. If the presence of the null CCR5delta32 allele results in a reduction of the chronic inflammation state present in SCD patients, this could lead to differential survival of SCD individuals who are carriers of the CCR5delta32 allele. This differential survival could be due to the development of less severe infections and consequently reduced or less severe vaso-occlusive crises.