952 resultados para carbon paste electrodes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0x10(-5) and 1.3x10(-3) mol/L of glucose. The biosensor showed a good suppression of interference and a negligible deviation in the amperometric detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through layer-by-layer assembly, undecatungstozincates monosubstituted by transition metals Mn, ZnW11 Mn (H2O) O-39(8-) was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of these polyoxometalates was investigated. Cyclic voltammetry proves the uniform growth of the film. They exhibit some special electrochemical properties in the films, different from those in homogeneous aqueous solution. The effect of pH on the redox behavior of ZnW11Mn(H2O)O-39(8-) in the film was discussed in detail. The multilayer film electrodes have an excellent electrocatalytic response to the reduction of H2O2 and BrO3-, and to the oxidation of ascorbic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A ferrocene-dimyristoyl phosphatidylcholine (DMPC) film electrode was prepared by casting the solution of ferrocene and DMPC in chloroform onto a glassy carbon electrode surface. Ferrocene retained in the biological membrane gave a couple of irreversible peaks of cyclic voltammogram. The electrode exhibited good electrocatalytic activity for the oxidation of ascorbic acid (H(2)A) in phosphate buffer (pH 6.64) with an anodic peak potential of +340 mV (vs. Ag/AgCl). The anodic current was directly proportional to the square root of the scan rate below 150 mV s(-1). The influence of the pH value was investigated and it was observed that pH 6.64 was the suitable value to the anodic peak potential and current. The thickness of the film and the interference of uric acid were also studied. The electrode can be used to determine H(2)A in the presence of equimolar uric acid. The catalytic peak current increased linearly with the concentration of H(2)A in the range of 1 X 10(-4)-5 X 10(-3) mol L-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable lipid cast film was made by casting a lipid in chloroform onto a glassy carbon electrode. We imbedded a new mediator norepinephrine into this lipid cast film, which was considered as a biological membrane model. Through electro catalytic oxidation of ascorbic acid by this system, the anodic overpotential was reduced by about 250 mV compared with that obtained at a bare glassy carbon electrode. The electrochemical behavior of norepinephrine in the cast film was controlled by diffusion. The obtained diffusion coefficient of ascorbic acid was 1.87 x 10(-5) cm 2 s(-1). The catalytic current increased linearly with the concentration of ascorbic acid in the range from 0.5 to 10 mM. Using cyclic voltammetry, we obtained two peaks for ascorbic acid and uric acid in the same solution. The separation between the two peaks is about 147 mV. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we studied the reactions of both potassium ferricyanide and hexaammineruthenium(III) chloride at a 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) by scanning electrochemical microscopy (SECM) in different pH solutions. The surface of the modified electrode has carboxyl groups, the dissociation of which are strongly dependent upon the solution pH values. The rate constant kb of the oxidation of ferrocyanide on the modified electrode can be obtained by fitting the experimental tip current-distance (I-T-d) curves with the theoretical values. The surface pK(a) of the 4-ABA modified GCE was estimated from the plot of standard rate constant k(o) versus the solution pH and is equal to 3.2, which is in good agreement with the reported result. The SECM approach curves for Ru(NH3)(6)(3+) both on the bare and the modified electrodes show similar diffusion control processes. These results can be explained by the electrostatic interactions between the modified electrode surface and the model compounds with different charges. (C) 2001 Elsevier Science BN. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an organic-inorganic composite film of heteropolyanion was Formed by attaching a Keggin-type heteropolyanion, SiW12O404-, on carbon electrode surface derivatized by 4-aminophenyl monolayer. The composite film thus grafted on carbon electrode surface has good stability because of the ionic bonding character between SiW12O404- and surface aminophenyl groups. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used to characterize the composite film. Compared with SiW12O404- electrodeposited on a bare glassy carbon electrode (GCE), the composite film gives three more sharp and well-defined redox couples attributed to two one- and two-electron processes, and the analyses of the voltammograms of SiW12O404- anion in the composite film modified on GCE shows that its surface coverage is close to a closest packing monolayer. STM characterization shows that a two-dimensional order heteropolyanion monolayer was formed on HOPG substrate. The composite film provides a favorable environment for electron and proton transfer between SiW12O404- ion and electrode surface, which may make it suitable for various applications in sensors and microelectronics devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The volumetric behavior of a chloride complex of palladium was studied at a glassy carbon electrode (GCE). The Pd-IV complex existing on the GCE surface was found, which was proposed to form an octahedral surface complex through coordination to the oxygen atom of an oxygen functional group on the pretreated GCE surface. The ferri/ferrocyanide redox couple was used as a probe to examine the activity of the GCE. X-ray photoelectron spectroscopy provided the evidence of the surface complex existing on the GCE. Highly dispersed Pd particles can be obtained when the surface complexes were reduced electrochemically to Pd atoms. The Pd particles obtained in this way were in nanometer scale and exhibit high catalytic activity towards the oxidation of hydrazine. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ion exchange mechanism accompanying the oxidation/reduction processes of cupric hexacyanoferrate-modified platinum electrodes in different aqueous electrolyte solutions has been studied by means of in situ probe beam deflection and the electrochemical quartz crystal microbalance technique. The results demonstrate that the charge neutrality of the film during the reoxidation/reduction process is accomplished predominantly by the movement of cations, but anions and/or solvent are also participator(s). Moreover, in KHC8H4O4 (potassium biphthalate) solution, the EQCM data obtained from chronoamperometry experiment are more complicated than those in KCl and K2SO4 solutions. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of the films formed in the electrolyte of PC/DME LiClO4 on two kinds of carbon materials were examined by cathodic polarization measurements. The result suggested that the films on both carbon electrodes have different morphology which resulted in the different cen performance of the two carbon anodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of Dawson-type P2W18O626- adsorbed on a glassy carbon electrode and doped in a polypyrrole film electrode was described. These modified electrodes all display catalytic activity for nitrite reduction, either in acid solutions or in pH > 4.0 solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on scanning tunnelling microscopy and electrochemical measurements, orientation and electrocatalytic function of riboflavin adsorbed on carbon substrates have been described for the first time. Scanning tunnelling micrographs show clearly that tip induction may result in an orientation change of the adsorbed riboflavin molecule on highly oriented pyrolytic graphite from the initially vertical orientation to the stable flat form. The adsorbed riboflavin as an effective mediator can accelerate the reduction of dioxygen which accepts two electrons from the reduced riboflavin to generate hydrogen peroxide. The rate constants of the electrocatalytic reaction in various pH solutions were determined using a rotating disc electrode modified with riboflavin. The pH effect and possible catalytic mechanism are discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose oxidase can be effectively adsorbed onto the polypyrrole(PPy) thin film electrochemically formed on an anodized galssy carbon electrode(GCEa). Direct electron communication between the redox of GOD and the modified electrode was successfully achieved, which was detected using cyclic voltammetry. GOD entrapped in PPy film still remained its biological activity and could catalyze the oxidation of glucose. As a third generation biosensor, GOD-PPy/GCEa responded linearly up to 20 mM glucose with a wider linear concentration range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.