749 resultados para biopharmaceutical classification
Resumo:
Internet on elektronisen postin perusrakenne ja ollut tärkeä tiedonlähde akateemisille käyttäjille jo pitkään. Siitä on tullut merkittävä tietolähde kaupallisille yrityksille niiden pyrkiessä pitämään yhteyttä asiakkaisiinsa ja seuraamaan kilpailijoitansa. WWW:n kasvu sekä määrällisesti että sen moninaisuus on luonut kasvavan kysynnän kehittyneille tiedonhallintapalveluille. Tällaisia palveluja ovet ryhmittely ja luokittelu, tiedon löytäminen ja suodattaminen sekä lähteiden käytön personointi ja seuranta. Vaikka WWW:stä saatavan tieteellisen ja kaupallisesti arvokkaan tiedon määrä on huomattavasti kasvanut viime vuosina sen etsiminen ja löytyminen on edelleen tavanomaisen Internet hakukoneen varassa. Tietojen hakuun kohdistuvien kasvavien ja muuttuvien tarpeiden tyydyttämisestä on tullut monimutkainen tehtävä Internet hakukoneille. Luokittelu ja indeksointi ovat merkittävä osa luotettavan ja täsmällisen tiedon etsimisessä ja löytämisessä. Tämä diplomityö esittelee luokittelussa ja indeksoinnissa käytettävät yleisimmät menetelmät ja niitä käyttäviä sovelluksia ja projekteja, joissa tiedon hakuun liittyvät ongelmat on pyritty ratkaisemaan.
Resumo:
In this paper we propose the use of the independent component analysis (ICA) [1] technique for improving the classification rate of decision trees and multilayer perceptrons [2], [3]. The use of an ICA for the preprocessing stage, makes the structure of both classifiers simpler, and therefore improves the generalization properties. The hypothesis behind the proposed preprocessing is that an ICA analysis will transform the feature space into a space where the components are independent, and aligned to the axes and therefore will be more adapted to the way that a decision tree is constructed. Also the inference of the weights of a multilayer perceptron will be much easier because the gradient search in the weight space will follow independent trajectories. The result is that classifiers are less complex and on some databases the error rate is lower. This idea is also applicable to regression
Resumo:
Diagnosis of community acquired legionella pneumonia (CALP) is currently performed by means of laboratory techniques which may delay diagnosis several hours. To determine whether ANN can categorize CALP and non-legionella community-acquired pneumonia (NLCAP) and be standard for use by clinicians, we prospectively studied 203 patients with community-acquired pneumonia (CAP) diagnosed by laboratory tests. Twenty one clinical and analytical variables were recorded to train a neural net with two classes (LCAP or NLCAP class). In this paper we deal with the problem of diagnosis, feature selection, and ranking of the features as a function of their classification importance, and the design of a classifier the criteria of maximizing the ROC (Receiving operating characteristics) area, which gives a good trade-off between true positives and false negatives. In order to guarantee the validity of the statistics; the train-validation-test databases were rotated by the jackknife technique, and a multistarting procedure was done in order to make the system insensitive to local maxima.
Resumo:
The Commission on Classification and Terminology and the Commission on Epidemiology of the International League Against Epilepsy (ILAE) have charged a Task Force to revise concepts, definition, and classification of status epilepticus (SE). The proposed new definition of SE is as follows: Status epilepticus is a condition resulting either from the failure of the mechanisms responsible for seizure termination or from the initiation of mechanisms, which lead to abnormally, prolonged seizures (after time point t1 ). It is a condition, which can have long-term consequences (after time point t2 ), including neuronal death, neuronal injury, and alteration of neuronal networks, depending on the type and duration of seizures. This definition is conceptual, with two operational dimensions: the first is the length of the seizure and the time point (t1 ) beyond which the seizure should be regarded as "continuous seizure activity." The second time point (t2 ) is the time of ongoing seizure activity after which there is a risk of long-term consequences. In the case of convulsive (tonic-clonic) SE, both time points (t1 at 5 min and t2 at 30 min) are based on animal experiments and clinical research. This evidence is incomplete, and there is furthermore considerable variation, so these time points should be considered as the best estimates currently available. Data are not yet available for other forms of SE, but as knowledge and understanding increase, time points can be defined for specific forms of SE based on scientific evidence and incorporated into the definition, without changing the underlying concepts. A new diagnostic classification system of SE is proposed, which will provide a framework for clinical diagnosis, investigation, and therapeutic approaches for each patient. There are four axes: (1) semiology; (2) etiology; (3) electroencephalography (EEG) correlates; and (4) age. Axis 1 (semiology) lists different forms of SE divided into those with prominent motor systems, those without prominent motor systems, and currently indeterminate conditions (such as acute confusional states with epileptiform EEG patterns). Axis 2 (etiology) is divided into subcategories of known and unknown causes. Axis 3 (EEG correlates) adopts the latest recommendations by consensus panels to use the following descriptors for the EEG: name of pattern, morphology, location, time-related features, modulation, and effect of intervention. Finally, axis 4 divides age groups into neonatal, infancy, childhood, adolescent and adulthood, and elderly.
Resumo:
Adult and pediatric laryngotracheal stenoses (LTS) comprise a wide array of various conditions that require precise preoperative assessment and classification to improve comparison of different therapeutic modalities in a matched series of patients. This consensus paper of the European Laryngological Society proposes a five-step endoscopic airway assessment and a standardized reporting system to better differentiate fresh, incipient from mature, cicatricial LTSs, simple one-level from complex multilevel LTSs and finally "healthy" from "severely morbid" patients. The proposed scoring system, which integrates all of these parameters, may be used to help define different groups of LTS patients, choose the best treatment modality for each individual patient and assess distinct post-treatment outcomes accordingly.
Resumo:
The main objective of the study is to form a framework that provides tools to recognise and classify items whose demand is not smooth but varies highly on size and/or frequency. The framework will then be combined with two other classification methods in order to form a three-dimensional classification model. Forecasting and inventory control of these abnormal demand items is difficult. Therefore another object of this study is to find out which statistical forecasting method is most suitable for forecasting of abnormal demand items. The accuracy of different methods is measured by comparing the forecast to the actual demand. Moreover, the study also aims at finding proper alternatives to the inventory control of abnormal demand items. The study is quantitative and the methodology is a case study. The research methods consist of theory, numerical data, current state analysis and testing of the framework in case company. The results of the study show that the framework makes it possible to recognise and classify the abnormal demand items. It is also noticed that the inventory performance of abnormal demand items differs significantly from the performance of smoothly demanded items. This makes the recognition of abnormal demand items very important.
Resumo:
The fossil crown wasp Electrostephanus petiolatus Brues comb. rev.(Stephanidae, Electrostephaninae) is re-described from a single male preserved in middle Eocene Baltic Amber. The holotype was lost or destroyed around the time of World War II and subsequent interpretations of its identity have been based solely on the brief descriptive comments provided by Brues in his original account. The new specimen matches the original description and illustration provided by Brues in every detail and we hereby consider them to be conspecific, selecting the specimen as a neotype for the purpose of stabilizing the nomenclature for this fossil species. This neotype exhibits a free first metasomal tergum and sternum, contrary to the assertion of previous workers who indicated these to be fused. Accordingly, this species does indeed belong to the genus Electrostephanus Brues rather than to Denaeostephanus Engel & Grimaldi (Stephaninae). Electrostephanus petiolatus is transferred to a new subgenus, Electrostephanodes n. subgen. , based on its elongate pseudo- petiole and slender gaster, but may eventually warrant generic status as the phylogenetic placement of these fossil lineages continues to be clarifi ed. A revised key to the Baltic amber crown wasps is provided.
Resumo:
Over the past few decades, age estimation of living persons has represented a challenging task for many forensic services worldwide. In general, the process for age estimation includes the observation of the degree of maturity reached by some physical attributes, such as dentition or several ossification centers. The estimated chronological age or the probability that an individual belongs to a meaningful class of ages is then obtained from the observed degree of maturity by means of various statistical methods. Among these methods, those developed in a Bayesian framework offer to users the possibility of coherently dealing with the uncertainty associated with age estimation and of assessing in a transparent and logical way the probability that an examined individual is younger or older than a given age threshold. Recently, a Bayesian network for age estimation has been presented in scientific literature; this kind of probabilistic graphical tool may facilitate the use of the probabilistic approach. Probabilities of interest in the network are assigned by means of transition analysis, a statistical parametric model, which links the chronological age and the degree of maturity by means of specific regression models, such as logit or probit models. Since different regression models can be employed in transition analysis, the aim of this paper is to study the influence of the model in the classification of individuals. The analysis was performed using a dataset related to the ossifications status of the medial clavicular epiphysis and results support that the classification of individuals is not dependent on the choice of the regression model.
Resumo:
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework.
Resumo:
Abstract This work studies the multi-label classification of turns in simple English Wikipedia talk pages into dialog acts. The treated dataset was created and multi-labeled by (Ferschke et al., 2012). The first part analyses dependences between labels, in order to examine the annotation coherence and to determine a classification method. Then, a multi-label classification is computed, after transforming the problem into binary relevance. Regarding features, whereas (Ferschke et al., 2012) use features such as uni-, bi-, and trigrams, time distance between turns or the indentation level of the turn, other features are considered here: lemmas, part-of-speech tags and the meaning of verbs (according to WordNet). The dataset authors applied approaches such as Naive Bayes or Support Vector Machines. The present paper proposes, as an alternative, to use Schoenberg transformations which, following the example of kernel methods, transform original Euclidean distances into other Euclidean distances, in a space of high dimensionality. Résumé Ce travail étudie la classification supervisée multi-étiquette en actes de dialogue des tours de parole des contributeurs aux pages de discussion de Simple English Wikipedia (Wikipédia en anglais simple). Le jeu de données considéré a été créé et multi-étiqueté par (Ferschke et al., 2012). Une première partie analyse les relations entre les étiquettes pour examiner la cohérence des annotations et pour déterminer une méthode de classification. Ensuite, une classification supervisée multi-étiquette est effectuée, après recodage binaire des étiquettes. Concernant les variables, alors que (Ferschke et al., 2012) utilisent des caractéristiques telles que les uni-, bi- et trigrammes, le temps entre les tours de parole ou l'indentation d'un tour de parole, d'autres descripteurs sont considérés ici : les lemmes, les catégories morphosyntaxiques et le sens des verbes (selon WordNet). Les auteurs du jeu de données ont employé des approches telles que le Naive Bayes ou les Séparateurs à Vastes Marges (SVM) pour la classification. Cet article propose, de façon alternative, d'utiliser et d'étendre l'analyse discriminante linéaire aux transformations de Schoenberg qui, à l'instar des méthodes à noyau, transforment les distances euclidiennes originales en d'autres distances euclidiennes, dans un espace de haute dimensionnalité.
Resumo:
Objective: We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods: The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to btain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results: The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion: Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients.