560 resultados para biodegradation
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by melt intercalation. The influence from the organoclays on the biodegradation of PLA was evaluated based on the respirometry method. The incorporation of clay Cloisite 20A did not change the mineralization curve of PLA. The nanocomposite with Cloisite 30B, on the other hand, presented a different behavior, indicating a delay in the polymer biodegradation. The materials were characterized by X-ray Diffraction, Thermogravimetric Analysis and Differential Scanning Calorimetry. The materials characterization indicated nanocomposites with an intercalated structure as well as reduced thermal stability and a slight increase in the degree of crystallinity compared to the pure polymer.
Resumo:
The persistence of MCs in aquatic environments and their difficult removal in the conventional water treatment is a challenge to companies of sanitation. However, the MCs are susceptible to degradation by bacteria present in water, sediment and sewage effluents. In this study, we investigated the biodegradation of MCs by microorganism present in carbon filters with biological activity (BAC) and their phylogenetic identification by sequencing gene 16S RNA. A study of water containing MCs was used, with different compositions, plus a filters BAC effluent. The results showed that of MCs were biodegraded by microorganism present in the biofilm. This study provides the ability to complete biodegradation of MCs by bacteria present in BAC filters and the possible use of these microorganisms as alternative of the removal of MCs in the treatment of drinking water
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The biodegradability properties of poly(epsilon-caprolactone) (PCL) and modified adipate-starch (AS) blends, using Edenol-3203 (E) as a starch plasticizer, were investigated in laboratory by burial tests of the samples in previously analyzed agricultural soil. The biodegradation process was carried out using the respirometric test according to ASTM D 5988-96, and the mineralization was followed by both variables such as carbon dioxide evolution and mass loss. The results indicated that the presence of AS-E accelerated the biodegradation rate as expected.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Azo dyes are extensively used for coloring textiles, paper, food, leather, drink, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10 - 15% of dyes used for coloring textiles might be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can be readly reduced by a number of chemical and biological reducing systems. Biological treatment is advantageous over physical and chemical method as result of its low cost and little disturbance to the environment. This research focuses on the utilization of Aspergillus oryzae, to remove some kinds of azo dyes from aqueous solutions. The fungi, physically induced in its paramorphogenic form (called, pellets), were used in the dyes biosorption studies with both non autoclave and autoclaved hyphas, at differents pH values. Thus the goals are the removal of dyes by biosorption and the decrease of its toxicity.
Resumo:
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.
Resumo:
This work intends to investigate the biodegradation of the polymers and blend films of polypropylene (PP) and poly(hidroxybutirate-valerate) (PHBV), after UV radiation to facilitate the PP degradation, which is a polymer with long chains difficult to degrade by biological agents present in the environment. This polymer is outstanding by its mechanical properties and versatility of industrial and commercial use and the PHBV by its quick biodegradability in the environment. Blends of these materials could to present a commitment between mechanical properties and biodegradability to execute its function and after the discard to have lesser lifetime in the garbage landfills. Another aspect of this work is the controlling effect of PP on PHBV, influencing its degradation time