944 resultados para axenic isolates
Resumo:
Campylobacter jejuni is the most important cause of bacterial gastroenteritis in humans. It is a commensal in many wild and domestic animals, including dogs. Whereas genotypes of human and chicken C. jejuni isolates have been described in some detail, only little information on canine C. jejuni genotypes is available. To gain more information on genotypes of canine C. jejuni and their zoonotic potential, isolates from routine diagnostics of diarrheic dogs as well as isolates of a prevalence study in non-diarrheic dogs were analyzed. Prevalence of thermophilic Campylobacter among non-diarrheic dogs was 6.3% for C. jejuni, 5.9% for Campylobacter upsaliensis and 0.7% for Campylobacter coli. The C. jejuni isolates were genotyped by multi locus sequence typing (MLST) and flaB typing. Resistance to macrolides and quinolones was genetically determined in parallel. Within the 134 genotyped C. jejuni isolates 57 different sequence types (ST) were found. Five STs were previously unrecognized. The most common STs were ST-48 (11.2%), ST-45 (10.5%) and ST-21 (6.0%). Whereas no macrolide resistance was found, 28 isolates (20.9%) were resistant to quinolones. ST-45 was significantly more prevalent in diarrheic than in non-diarrheic dogs. Within the common time frame of isolation 94% of the canine isolates had a ST that was also found in human clinical isolates. In conclusion, prevalence of C. jejuni in Swiss dogs is low but there is a large genetic overlap between dog and human isolates. Given the close contact between human and dogs, the latter should not be ignored as a potential source of human campylobacteriosis.
Resumo:
Campylobacteriosis is the most frequent zoonosis in developed countries and various domestic animals can function as reservoir for the main pathogens Campylobacter jejuni and Campylobacter coli. In the present study we compared population structures of 730 C. jejuni and C. coli from human cases, 610 chicken, 159 dog, 360 pig and 23 cattle isolates collected between 2001 and 2012 in Switzerland. All isolates had been typed with multi locus sequence typing (MLST) and flaB-typing and their genotypic resistance to quinolones was determined. We used complementary approaches by testing for differences between isolates from different hosts with the proportion similarity as well as the fixation index and by attributing the source of the human isolates with Bayesian assignment using the software STRUCTURE. Analyses were done with MLST and flaB data in parallel and both typing methods were tested for associations of genotypes with quinolone resistance. Results obtained with MLST and flaB data corresponded remarkably well, both indicating chickens as the main source for human infection for both Campylobacter species. Based on MLST, 70.9% of the human cases were attributed to chickens, 19.3% to cattle, 8.6% to dogs and 1.2% to pigs. Furthermore we found a host independent association between sequence type (ST) and quinolone resistance. The most notable were ST-45, all isolates of which were susceptible, while for ST-464 all were resistant.
Resumo:
Many Member States of the European Union (EU) currently monitor antimicrobial resistance in zoonotic agents, including Salmonella and Campylobacter. According to Directive 2003/99/EC, Member States shall ensure that the monitoring provides comparable data on the occurrence of antimicrobial resistance. The European Commission asked the European Food Safety Authority to prepare detailed specifications for harmonised schemes for monitoring antimicrobial resistance. The objective of these specifications is to lay down provisions for a monitoring and reporting scheme for Salmonella in fowl (Gallus gallus), turkeys and pigs, and for Campylobacter jejuni and Campylobacter coli in broiler chickens. The current specifications are considered to be a first step towards a gradual implementation of comprehensive antimicrobial resistance monitoring at the EU level. These specifications propose to test a common set of antimicrobial agents against available cut-off values and a specified concentration range to determine the susceptibility of Salmonella and Campylobacter. Using isolates collected through programmes in which the sampling frame covers all epidemiological units of the national production, the target number of Salmonella isolates to be included in the antimicrobial resistance monitoring per Member State per year is 170 for each study population (i.e., laying hens, broilers, turkeys and slaughter pigs). The target number of Campylobacter isolates to be included in the antimicrobial resistance monitoring per Member State per year is 170 for each study population (i.e., broilers). The results of the antimicrobial resistance monitoring are assessed and reported in the yearly national report on trends and sources of zoonoses, zoonotic agents and antimicrobial resistance.
Resumo:
The blaESBL and blaAmpC genes in Enterobacteriaceae are spread by plasmid-mediated integrons, insertion sequences, and transposons, some of which are homologous in bacteria from food animals, foods, and humans. These genes have been frequently identified in Escherichia coli and Salmonella from food animals, the most common being blaCTX-M-1, blaCTX-M-14, and blaCMY-2. Identification of risk factors for their occurrence in food animals is complex. In addition to generic antimicrobial use, cephalosporin usage is an important risk factor for selection and spread of these genes. Extensive international trade of animals is a further risk factor. There are no data on the effectiveness of individual control options in reducing public health risks. A highly effective option would be to stop or restrict cephalosporin usage in food animals. Decreasing total antimicrobial use is also of high priority. Implementation of measures to limit strain dissemination (increasing farm biosecurity, controls in animal trade, and other general postharvest controls) are also important.
Resumo:
The incidence of human brucellosis in Kyrgyzstan has been increasing in the last years and was identified as a priority disease needing most urgent control measures in the livestock population. The latest species identification of Brucella isolates in Kyrgyzstan was carried out in the 1960s and investigated the circulation of Brucella abortus, B. melitensis, B. ovis, and B. suis. However, supporting data and documentation of that experience are lacking. Therefore, typing of Brucella spp. and identification of the most important host species are necessary for the understanding of the main transmission routes and to adopt an effective brucellosis control policy in Kyrgyzstan. Overall, 17 B. melitensis strains from aborted fetuses of sheep and cattle isolated in the province of Naryn were studied. All strains were susceptible to trimethoprim-sulfamethoxazole, gentamicin, rifampin, ofloxacin, streptomycin, doxycycline, and ciprofloxacin. Multilocus variable number tandem repeat analysis showed low genetic diversity. Kyrgyz strains seem to be genetically associated with the Eastern Mediterranean group of the Brucella global phylogeny. We identified and confirmed transmission of B. melitensis to cattle and a close genetic relationship between B. melitensis strains isolated from sheep sharing the same pasture.
Resumo:
Increasing trends for invasive infections with extended-spectrum cephalosporin-resistant (ESC-R) Enterobacteriaceae have been described in many countries worldwide. However, data on the rates of ESC-R isolates in non-invasive infections and in the outpatient setting are scarce. We used a laboratory-based nationwide surveillance system to compare temporal trends of ESC-R rates in Escherichia coli and Klebsiella pneumoniae for in- and outpatients in Switzerland. Our data showed a significant increase in ESC-R rates from 1% to 5.8% in E. coli (p<0.001) and from 1.1% to 4.4% in K. pneumoniae (p=0.002) during an eight-year period (2004–2011). For E. coli, the increase was significantly higher in inpatients (from 1.2% to 6.6%), in patients residing in eastern Switzerland (from 1.0% to 6.2%), in patients older than 45 years (from 1.2% to 6.7%), and in male patients (from 1.2% to 8.1%). While the increase in inpatients was linear (p<0.001) for E. coli, the increase of ESC R K. pneumoniae isolates was the result of multiple outbreaks in several institutions. Notably, an increasing proportion of ESC-R E. coli was co-resistant to both trimethoprim-sulfamethoxazole and quinolones (42% in 2004 to 49.1% in 2011, p=0.009), further limiting the available oral therapeutic options.
Resumo:
Background: The spread of Neisseria gonorrhoeae (Ng) isolates resistant to the clinically implemented antibiotics is challenging the efficacy of treatments. Unfortunately, phenotypic and molecular data regarding Ng detected in Switzerland are scarce. Methods: We compared the characteristics of Ng detected during 1998–2001 (n = 26) to those detected during 2009–2012 (n = 34). MICs were obtained with the Etest and interpreted as non-susceptible (non-S) according to EUCAST criteria. Sequence type (ST) was achieved implementing the NG-MAST. BlaTEM, ponA, penA, mtrR, penB, tet (M), gyrA, parC, mefA, ermA/B/C/F, rplD, rplV, and 23S rRNA genes were analyzed. Results: The following susceptibility results were obtained (period: % of non-S, MIC90 in mg/L): penicillin (1998–2001: 42.3%, 3; 2009–2012: 85.3%, 16), cefixime (1998–2001: 0%, ≤0.016; 2009–2012: 8.8%, 0.125), ceftriaxone (1998–2001: 0%, 0.004; 2009–2012: 0%, 0.047), ciprofloxacin (1998–2001: 7.7%, 0.006; 2009–2012: 73.5%, ≥32), azithromycin (1998–2001: 11.5%, 0.25; 2009–2012: 23.6%, 0.38), tetracycline (1998–2001: 65.4%, 12; 2009–2012: 88.2%, 24), spectinomycin (1998–2001: 0%, 12; 2009–2012: 0%, 8). The prevalence of multidrug-resistant (MDR) isolates increased from 7.7% in 1998–2001 to 70.6% in 2009–2012. International STs and genogroups (G) emerged during 2009–2012 (G1407, 29.4%; G2992, 11.7%; G225, 8.8%). These isolates possessed distinctive mechanisms of resistance (e.g., G1407: PBP1 with L421, PBP2 pattern XXXIV, GyrA with S91F and D95G, ParC with S87R, PorB with G120K and A121N, mtrR promoter with A deletion). Conclusions: The prevalence of penicillin- ciprofloxacin- and tetracycline-resistant Ng has reached dramatic levels, whereas cefixime and ceftriaxone show MICs that tend to increase during time. International MDR clones less susceptible to cephalosporins are rapidly emerging indicating that the era of untreatable gonococcal infections is close.
Resumo:
Three field isolates of small ruminant lentiviruses (SRLVs) were derived from a mixed flock of goats and sheep certified for many years as free of caprine arthritis encephalitis virus (CAEV). The phylogenetic analysis of pol sequences permitted to classify these isolates as A4 subtype. None of the animals showed clinical signs of SRLV infection, confirming previous observations which had suggested that this particular subtype is highly attenuated, at least for goats. A quantitative real time PCR strategy based on primers and probes derived from a highly variable env region permitted us to classify the animals as uninfected, singly or doubly infected. The performance of different serological tools based on this classification revealed their profound inadequacy in monitoring animals infected with this particular SRLV subtype. In vitro, the isolates showed differences in their cytopathicity and a tendency to replicate more efficiently in goat than sheep cells, especially in goat macrophages. By contrast, in vivo, these viruses reached significantly higher viral loads in sheep than in goats. Both env subtypes infected goats and sheep with equal efficiency. One of these, however, reached significantly higher viral loads in both species. In conclusion, we characterized three isolates of the SRLV subtype A4 that efficiently circulate in a mixed herd of goats and sheep in spite of their apparent attenuation and a strict physical separation between goats and sheep. The poor performance of the serological tools applied indicates that, to support an SRLV eradication campaign, it is imperative to develop novel, subtype specific tools.
Resumo:
Enterococcus faecium has emerged as an important cause of nosocomial infections over the last two decades. We recently demonstrated collagen type I (CI) as a common adherence target for some E. faecium isolates and a significant correlation was found to exist between acm-mediated CI adherence and clinical origin. Here, we evaluated 60 diverse E. faecium isolates for their adherence to up to 15 immobilized host extracellular matrix and serum components. Adherence phenotypes were most commonly observed to fibronectin (Fn) (20% of the 60 isolates), fibrinogen (17%) and laminin (Ln) (13%), while only one or two of the isolates adhered to collagen type V (CV), transferrin or lactoferrin and none to the other host components tested. Adherence to Fn and Ln was almost exclusively restricted to clinical isolates, especially the endocarditis-enriched nosocomial genogroup clonal complex 17 (CC17). Thus, the ability to adhere to Fn and Ln, in addition to CI, may have contributed to the emergence and adaptation of E. faecium, in particular CC17, as a nosocomial pathogen.
Resumo:
BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.
Resumo:
Enterococcus faecium recently evolved from a generally avirulent commensal into a multidrug-resistant health care-associated pathogen causing difficult-to-treat infections, but little is known about the factors responsible for this change. We previously showed that some E. faecium strains express a cell wall-anchored collagen adhesin, Acm. Here we analyzed 90 E. faecium isolates (99% acm(+)) and found that the Acm protein was detected predominantly in clinically derived isolates, while the acm gene was present as a transposon-interrupted pseudogene in 12 of 47 isolates of nonclinical origin. A highly significant association between clinical (versus fecal or food) origin and collagen adherence (P
Resumo:
Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhea among children, human immunodeficiency virus-infected patients, and travelers to developing regions of the world. The pathogenesis of EAEC strains involves the production of biofilm. In this study, we determined the association between presence of putative EAEC virulence genes and biofilm formation in 57 EAEC isolates (as defined by HEp-2 adherence) from travelers with diarrhea and in 18 EAEC isolates from travelers without diarrhea. Twelve nondiarrheagenic E. coli isolates from healthy travelers were used as controls. Biofilm formation was measured by using a microtiter plate assay with the crystal violet staining method, and the presence of the putative EAEC virulence genes aap, aatA, aggR, astA, irp2, pet, set1A, and shf was determined by PCR. EAEC isolates were more likely to produce biofilm than nondiarrheagenic E. coli isolates (P = 0.027), and the production of biofilm was associated with the virulence genes aggR, set1A, aatA, and irp2, which were found in 16 (40%), 17 (43%), 10 (25%), and 27 (68%) of the biofilm producers versus only 4 (11%), 6 (6%), 2 (6%), and 15 (43%) in non-biofilm producers (P = 0.008 for aggR, P = 0.0004 for set1A, P = 0.029 for aatA, and P = 0.04 for irp2). Although the proportion of EAEC isolates producing biofilm in patients with diarrhea (51%) was similar to that in patients without diarrhea (61%), biofilm production was related to the carriage of aggR (P = 0.015), set1A (P = 0.001), and aatA (P = 0.025). Since aggR is a master regulator of EAEC, the presence of aap (P = 0.004), astA (P = 0.001), irp2 (P = 0.0006), pet (P = 0.002), and set1A (P = 0.014) in an aggR versus an aggR-lacking background was investigated and was also found to be associated with biofilm production. This study suggests that biofilm formation is a common phenomenon among EAEC isolates derived from travelers with or without diarrhea and that multiple genes associated with biofilm formation are regulated by aggR.
Resumo:
Using 98 clinical methicillin-susceptible Staphylococcus aureus isolates of known beta-lactamase (Bla) type, we found a pronounced inoculum effect for cephalexin (mostly Bla type A and C strains), a mild inoculum effect for cephalothin (especially types B and C), and no inoculum effects for ceftriaxone and cefuroxime. Ceftobiprole showed the lowest MICs at a high inoculum but with a slight increase for Bla-positive versus Bla-negative strains. Since a potential therapeutic effect associated with a cephalosporin inoculum effect has been described, further studies are warranted.
Resumo:
Methicillin (meticillin)-susceptible Staphylococcus aureus (MSSA) strains producing large amounts of type A beta-lactamase (Bla) have been associated with cefazolin failures, but the frequency and impact of these strains have not been well studied. Here we examined 98 MSSA clinical isolates and found that 26% produced type A Bla, 15% type B, 46% type C, and none type D and that 13% lacked blaZ. The cefazolin MIC(90) was 2 microg/ml for a standard inoculum and 32 microg/ml for a high inoculum, with 19% of isolates displaying a pronounced inoculum effect (MICs of >or=16 microg/ml with 10(7) CFU/ml) (9 type A and 10 type C Bla producers). At the high inoculum, type A producers displayed higher cefazolin MICs than type B or C producers, while type B and C producers displayed higher cefamandole MICs. Among isolates from hemodialysis patients with MSSA bacteremia, three from the six patients who experienced cefazolin failure showed a cefazolin inoculum effect, while none from the six patients successfully treated with cefazolin showed an inoculum effect, suggesting an association between these strains and cefazolin failure (P = 0.09 by Fisher's exact test). In summary, 19% of MSSA clinical isolates showed a pronounced inoculum effect with cefazolin, a phenomenon that could explain the cases of cefazolin failure previously reported for hemodialysis patients with MSSA bacteremia. These results suggest that for serious MSSA infections, the presence of a significant inoculum effect with cefazolin could be associated with clinical failure in patients treated with this cephalosporin, particularly when it is used at low doses.
Resumo:
Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of