882 resultados para automatic music analysis
Resumo:
Writer identification consists in determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores which uses only music notation to determine the author. The steps of the proposed system are the following. First of all, the music sheet is preprocessed for obtaining a music score without the staff lines. Afterwards, four different methods for generating texture images from music symbols are applied. Every approach uses a different spatial variation when combining the music symbols to generate the textures. Finally, Gabor filters and Grey-scale Co-ocurrence matrices are used to obtain the features. The classification is performed using a k-NN classifier based on Euclidean distance. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving encouraging identification rates.
Resumo:
BACKGROUND: The mollicute Mycoplasma conjunctivae is the etiological agent leading to infectious keratoconjunctivitis (IKC) in domestic sheep and wild caprinae. Although this pathogen is relatively benign for domestic animals treated by antibiotics, it can lead wild animals to blindness and death. This is a major cause of death in the protected species in the Alps (e.g., Capra ibex, Rupicapra rupicapra). METHODS: The genome was sequenced using a combined technique of GS-FLX (454) and Sanger sequencing, and annotated by an automatic pipeline that we designed using several tools interconnected via PERL scripts. The resulting annotations are stored in a MySQL database. RESULTS: The annotated sequence is deposited in the EMBL database (FM864216) and uploaded into the mollicutes database MolliGen http://cbi.labri.fr/outils/molligen/ allowing for comparative genomics. CONCLUSION: We show that our automatic pipeline allows for annotating a complete mycoplasma genome and present several examples of analysis in search for biological targets (e.g., pathogenic proteins).
Resumo:
This paper provides an insight to the development of a process model for the essential expansion of the automatic miniload warehouse. The model is based on the literature research and covers four phases of a warehouse expansion: the preparatory phase, the current state analysis, the design phase and the decision making phase. In addition to the literature research, the presented model is based on a reliable data set and can be applicable with a reasonable effort to ensure the informed decision on the warehouse layout. The model is addressed to users who are usually employees of logistics department, and is oriented on the improvement of the daily business organization combined with the warehouse expansion planning.
Resumo:
ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.
Resumo:
This paper evaluates the performance of the most popular power saving mechanisms defined in the IEEE 802.11 standard, namely the Power Save Mode (Legacy-PSM) and the Unscheduled Automatic Power Save Delivery (U-APSD). The assessment comprises a detailed study concerning energy efficiency and capability to guarantee the required Quality of Service (QoS) for a certain application. The results, obtained in the OMNeT++ simulator, showed that U-APSD is more energy efficient than Legacy-PSM without compromising the end-to- end delay. Both U-APSD and Legacy-PSM revealed capability to guarantee the application QoS requirements in all the studied scenarios. However, unlike U-APSD, when Legacy-PSM is used in the presence of QoS demanding applications, all the stations connected to the network through the same access point will consume noticeable additional energy.
Resumo:
The fuzzy online reputation analysis framework, or “foRa” (plural of forum, the Latin word for marketplace) framework, is a method for searching the Social Web to find meaningful information about reputation. Based on an automatic, fuzzy-built ontology, this framework queries the social marketplaces of the Web for reputation, combines the retrieved results, and generates navigable Topic Maps. Using these interactive maps, communications operatives can zero in on precisely what they are looking for and discover unforeseen relationships between topics and tags. Thus, using this framework, it is possible to scan the Social Web for a name, product, brand, or combination thereof and determine query-related topic classes with related terms and thus identify hidden sources. This chapter also briefly describes the youReputation prototype (www.youreputation.org), a free web-based application for reputation analysis. In the course of this, a small example will explain the benefits of the prototype.
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
Introduction Musicians often suffer injuries related to their music playing. Therefore, some use Alexander Technique (AT), a mental-physical method that facilitates to release unnecessary muscle tension and to re-educate non-beneficial movement patterns through enhanced kinaesthetic awareness. According to a recent review AT may be effective for chronic back pain [1]. This review aimed to evaluate the evidence for the effectiveness of AT lessons on music performance and musicians’ health and well-being. Methods The following electronic databases were searched up to July 2012 for relevant literature: PUBMED, Google Scholar, CINAHL and EMBASE. The search criteria were "Alexander technique" AND "music*" [all fields]. References were searched, and experts and societies of AT or musicians' medicine contacted for further publications. Results 100 studies were identified. 24 studies were included for further analysis, 5 of which were randomised controlled trials (RCTs), 5 controlled but not randomised (CTs), 5 without control group, 2 mixed methods (RCT and case studies), and 7 surveys. 13 to 72 musicians participated per RCT. In 5 RCTs AT groups received between 12 and 20 one-to-one lessons. In 4 RCTs control groups received no interventions. Primary outcomes were performance anxiety, music performance, "use" as well as respiratory function and pain. Performance anxiety decreased by AT in 3 of 4 RCTs and in 3 of 3 CTs. Music performance was improved by AT in 1 RCT, yet in 2 RCTs comparing neurofeedback (NF) to AT, only NF showed improvements. Discussion and Conclusion To investigate the effectiveness of AT in musicians a variety of study designs and outcome measures have been used. Evidence from RCTs suggests that AT may improve performance anxiety in musicians. Effects on music performance, body use and respiratory function yet remain inconsistent. Future trials with scientifically sound study designs are warranted to further and more reliably explore the potential of AT as a relatively low cost and low risk method in the interest of musicians. References [1] Woodman JP, Moore NR. Evidence for the effectiveness of Alexander Technique lessons in medical and health-related conditions: a systematic review. Int J Clin Pract 2012;66(1):98-112.
Resumo:
Purpose Musicians often suffer injuries related to their music playing. Therefore, some use the Alexander Technique (AT), a psycho-physical method that helps to release unnecessary muscle tension and re-educates non-beneficial movement patterns through enhanced kinaesthetic awareness. According to a recent review AT may be effective for chronic back pain. This review aimed to evaluate the evidence for the effectiveness of AT lessons on music performance and musicians’ health and well-being. Methods The following electronic databases were searched up to July 2012 for relevant literature: PUBMED, Google Scholar, CINAHL and EMBASE. The search criteria were "Alexander technique" AND "music*" [all fields]. References were searched, and experts and societies of AT or musicians' medicine contacted for further publications. Results 100 studies were identified. 35 studies were included for further analysis, 5 of which were randomised controlled trials (RCTs), 5 controlled but not randomised, 5 not controlled, 5 qualitative case studies, 2 mixed-models (RCT and case studies), 7 surveys, 4 qualitative case reports and 2 unpublished pilot studies. 13 to 72 musicians participated per RCT. In 5 RCTs AT groups received between 12 and 20 one-to-one lessons. In 4 RCTs control groups received no interventions. Primary outcomes were performance anxiety, performance, "use" as well as respiratory function and pain. Performance anxiety decreased by AT in 3 of 4 RCTs. Music performance was improved by AT in 1 RCT, yet in 2 RCTs comparing neurofeedback (NF) to AT, only NF showed improvements. Conclusions To investigate the effectiveness of AT in musicians a variety of study designs and outcome measures have been used. Evidence from RCTs suggests that AT may improve performance anxiety in musicians. Effects on music performance, body use and respiratory function yet remain inconsistent. Future trials with well-established study designs are warranted to further and more reliably explore the potential of AT as a relatively low cost and low risk method in the interest of musicians.
Resumo:
INTRODUCTION: Experience-based adaptation of emotional responses is an important faculty for cognitive and emotional functioning. Professional musicians represent an ideal model in which to elicit experience-driven changes in the emotional processing domain. The changes of the central representation of emotional arousal due to musical expertise are still largely unknown. The aim of the present study was to investigate the electroencephalogram (EEG) correlates of experience-driven changes in the domain of emotional arousal. Therefore, the differences in perceived (subjective arousal via ratings) and physiologically measured (EEG) arousal between amateur and professional musicians were examined. PROCEDURE: A total of 15 professional and 19 amateur musicians listened to the first movement of Ludwig van Beethoven's 5th symphony (duration=∼7.4min), during which a continuous 76-channel EEG was recorded. In a second session, the participants evaluated their emotional arousal during listening. In a tonic analysis, we examined the average EEG data over the time course of the music piece. For a phasic analysis, a fast Fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. RESULTS: The subjective arousal ratings of the professional musicians were more consistent than those of the amateur musicians. In the tonic EEG analysis, a mid-frontal theta activity was observed in the professionals. In the phasic EEG, the professionals exhibited an increase of posterior alpha, central delta, and beta rhythm during high arousal. DISCUSSION: Professionals exhibited different and/or more intense patterns of emotional activation when they listened to the music. The results of the present study underscore the impact of music experience on emotional reactions.
Resumo:
Music is an intriguing stimulus widely used in movies to increase the emotional experience. However, no brain imaging study has to date examined this enhancement effect using emotional pictures (the modality mostly used in emotion research) and musical excerpts. Therefore, we designed this functional magnetic resonance imaging study to explore how musical stimuli enhance the feeling of affective pictures. In a classical block design carefully controlling for habituation and order effects, we presented fearful and sad pictures (mostly taken from the IAPS) either alone or combined with congruent emotional musical excerpts (classical pieces). Subjective ratings clearly indicated that the emotional experience was markedly increased in the combined relative to the picture condition. Furthermore, using a second-level analysis and regions of interest approach, we observed a clear functional and structural dissociation between the combined and the picture condition. Besides increased activation in brain areas known to be involved in auditory as well as in neutral and emotional visual-auditory integration processes, the combined condition showed increased activation in many structures known to be involved in emotion processing (including for example amygdala, hippocampus, parahippocampus, insula, striatum, medial ventral frontal cortex, cerebellum, fusiform gyrus). In contrast, the picture condition only showed an activation increase in the cognitive part of the prefrontal cortex, mainly in the right dorsolateral prefrontal cortex. Based on these findings, we suggest that emotional pictures evoke a more cognitive mode of emotion perception, whereas congruent presentations of emotional visual and musical stimuli rather automatically evoke strong emotional feelings and experiences.
Resumo:
The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979–2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located in its interior. This study further includes a comprehensive comparison of high precipitation in ERA-Interim with precipitation data from the Antarctic Mesoscale Prediction System (AMPS) and snow accumulation measurements from automatic weather stations (AWSs), with the limitations of such a comparison being discussed. The ERA-Interim and AMPS precipitation data agree very well. However, the correspondence between high precipitation in ERA-Interim and high snow accumulation at the AWSs is relatively weak. High-precipitation events at both Halvfarryggen and Kohnen are typically associated with amplified upper level waves. This large-scale atmospheric flow pattern is preceded by the downstream development of a Rossby wave train from the eastern South Pacific several days before the precipitation event. At the surface, a cyclone located over the Weddell Sea is the main synoptic ingredient for high precipitation both at Halvfarryggen and at Kohnen. A blocking anticyclone downstream is not a requirement for high precipitation per se, but a larger share of blocking occurrences during the highest-precipitation days in DML suggests that these blocks strengthen the vertically integrated water vapor transport (IVT) into DML. A strong link between high precipitation and the IVT perpendicular to the local orography suggests that IVT could be used as a “proxy” for high precipitation, in particular over DML's interior.
Resumo:
The most influential theoretical account in time psychophysics assumes the existence of a unitary internal clock based on neural counting. The distinct timing hypothesis, on the other hand, suggests an automatic timing mechanism for processing of durations in the sub-second range and a cognitively controlled timing mechanism for processing of durations in the range of seconds. Although several psychophysical approaches can be applied for identifying the internal structure of interval timing in the second and sub-second range, the existing data provide a puzzling picture of rather inconsistent results. In the present chapter, we introduce confirmatory factor analysis (CFA) to further elucidate the internal structure of interval timing performance in the sub-second and second range. More specifically, we investigated whether CFA would rather support the notion of a unitary timing mechanism or of distinct timing mechanisms underlying interval timing in the sub-second and second range, respectively. The assumption of two distinct timing mechanisms which are completely independent of each other was not supported by our data. The model assuming a unitary timing mechanism underlying interval timing in both the sub-second and second range fitted the empirical data much better. Eventually, we also tested a third model assuming two distinct, but functionally related mechanisms. The correlation between the two latent variables representing the hypothesized timing mechanisms was rather high and comparison of fit indices indicated that the assumption of two associated timing mechanisms described the observed data better than only one latent variable. Models are discussed in the light of the existing psychophysical and neurophysiological data.
Resumo:
In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other methods where each image patch independently predicts its displacement, we jointly estimate the displacements from all patches together in a data driven way, by considering not only the training data but also geometric constraints on the test image. The displacements estimation is formulated as a convex optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model as the a priori information to regularize the landmark positions and thus generate the segmented shape contour. We validate our method on X-ray image datasets of three different anatomical structures: complete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in landmark detection, and, combined with the shape model, gives a better or comparable performance in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data shows the extensibility of our method to 3D data.