977 resultados para assembly of PSII
Resumo:
Cytokinesis in bacteria depends upon the contractile Z ring, which is composed of dynamic polymers of the tubulin homolog FtsZ as well as other membrane-associated proteins such as FtsA, a homolog of actin that is required for membrane attachment of the Z ring and its subsequent constriction. Here we show that a previously characterized hypermorphic mutant FtsA (FtsA*) partially disassembled FtsZ polymers in vitro. This effect was strictly dependent on ATP or ADP binding to FtsA* and occurred at substoichiometric levels relative to FtsZ, similar to cellular levels. Nucleotide-bound FtsA* did not affect FtsZ GTPase activity or the critical concentration for FtsZ assembly but was able to disassemble preformed FtsZ polymers, suggesting that FtsA* acts on FtsZ polymers. Microscopic examination of the inhibited FtsZ polymers revealed a transition from long, straight polymers and polymer bundles to mainly short, curved protofilaments. These results indicate that a bacterial actin, when activated by adenine nucleotides, can modify the length distribution of bacterial tubulin polymers, analogous to the effects of actin-depolymerizing factor/cofilin on F-actin.
Resumo:
In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.
Resumo:
The major goal of this work was to define the role of accessory protein, NARJ, in assembly of nitrate reductase which is a membrane-bound multisubunit enzyme that can catalyze the reduction of nitrate to nitrite under anaerobic growth in E. coli. Nitrate reductase is encoded by the nar GHJI operon under control of the narG promoter. The purified nitrate reductase is composed of three subunits: $\alpha,\ \beta,$ and $\gamma.$ The NARJ protein which is encoded by the third gene (narJ) is not found to be associated with any of the purified preparations of the enzyme, but is required for active nitrate reductase. In this study the product of the narJ gene was identified. NARJ appeared to be produced at a reduced level, compared to the other proteins encoded by the nar operon. Since NARJ could not be overexpressed to a level for an efficient purification, NARJ was expressed and purified as a recombinant protein with polyhistidine tag. The recombinant protein NARJ-6His could functionally replace native NARJ. Purified NARJ-6His is a dimeric protein which contains no identifiable cofactors or unique secondary structure. NARJ was localized in the cytoplasm, and was not associated with nitrate reductase in the membrane. In vivo NARJ activated the $\alpha\beta$ complex and stabilized the $\alpha$ subunit against protease degradation. In the absence of the membrane-bound $\gamma$ subunit, NARJ formed an intermediate complex with $\alpha\beta$ in the cytosol. Based on these studies, NARJ fits the formal definition of a molecular chaperone. It appears to be required only for the biogenesis of nitrate reductase and, therefore, is defined as a private chaperone specifically involved in the assembly of nitrate reductase system. ^
Resumo:
Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: A small, germline micronucleus and a massive, vegetative macronucleus. The genome within Stylonychia's macronucleus has a very unusual architecture, comprised variably and highly amplified "nanochromosomes," each usually encoding a single gene with a minimal amount of surrounding noncoding DNA. As only a tiny fraction of the Stylonychia genes has been sequenced, and to promote research using this organism, we sequenced its macronuclear genome. We report the analysis of the 50.2-Mb draft S. lemnae macronuclear genome assembly, containing in excess of 16,000 complete nanochromosomes, assembled as less than 20,000 contigs. We found considerable conservation of fundamental genomic properties between S. lemnae and its close relative, Oxytricha trifallax, including nanochromosomal gene synteny, alternative fragmentation, and copy number. Protein domain searches in Stylonychia revealed two new telomere-binding protein homologs and the presence of linker histones. Among the diverse histone variants of S. lemnae and O. trifallax, we found divergent, coexpressed variants corresponding to four of the five core nucleosomal proteins (H1.2, H2A.6, H2B.4, and H3.7) suggesting that these ciliates may possess specialized nucleosomes involved in genome processing during nuclear differentiation. The assembly of the S. lemnae macronuclear genome demonstrates that largely complete, well-assembled highly fragmented genomes of similar size and complexity may be produced from one library and lane of Illumina HiSeq 2000 shotgun sequencing. The provision of the S. lemnae macronuclear genome sets the stage for future detailed experimental studies of chromatin-mediated, RNA-guided developmental genome rearrangements.
Resumo:
Supramolecular DNA assembly blends DNA building blocks with synthetic organic and inorganic molecules giving structural and functional advantages both to the initial self-assembly process and to the final construct. Synthetic molecules can bring a number of additional interactions into DNA nanotechnology. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA “foldamers”). In previous work it was shown that short oligopyrenotides (phosphodiester-linked pyrene oligomers) behave as staircase-like foldamers, which cooperatively self-assemble into two-dimensional supramolecular polymers in aqueous medium. Herein, we demonstrate that a 10-mer DNA-sequence modified with 7 pyrene units (see illustration) forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphological studies, and the spectroscopic properties of the investigated DNA-sequences (illustrative AFM picture shown below).
Resumo:
Supramolecular DNA assembly blends DNA building blocks with synthetic organic molecules giving structural and functional advantages. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA 'foldamers'). In previous work it was shown that short oligopyrenotides behave as staircase-like foldamers, which cooperatively self-assemble into 2D supramolecular polymers in aqueous medium. Herein, we demonstrate that 10-mer DNA-sequence conjugated with seven pyrene unites forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphologycal studies (AFM and TEM), and the spectroscopic properties (UV/vis, CD) of the investigated pyrene - conjugated DNA-sequence.
Resumo:
Using molecular building blocks to self-assemble lattices supporting long-range magnetic order is currently an active area of solid-state chemistry. Consequently, it is the realm of supramolecular chemistry that synthetic chemists are turning to in order to develop techniques for the synthesis of structurally well-defined supramolecular materials. In recent years we have investigated the versatility and usefulness of two classes of molecular building blocks, namely, tris-oxalato transition-metal (M. Pilkington and S. Decurtins, in “Magnetoscience—From Molecules to Materials,” Wiley–VCH, 2000), and octacyanometalate complexes (Pilkington and Decurtins, Chimia 54, 593 (2001)), for applications in the field of molecule-based magnets. Anionic, tris-chelated oxalato building blocks are able to build up two-dimensional honeycomb-layered structural motifs as well as three-dimensional decagon frameworks. The discrimination between the crystallization of the two- or three-dimensional structures relies on the choice of the templating counterions (Decurtins, Chimia 52, 539 (1998); Decurtins et al. Mol. Cryst. Liq. Cryst. 273, 167 (1995); New J. Chem. 117 (1998)). These structural types display a range of ferro, ferri, and antiferromagnetic properties (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials”). Octacyanometalate building blocks self-assemble to afford two new classes of cyano-bridged compounds namely, molecular clusters and extended three dimensional networks (J. Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000); Pilkington et al., in preparation). The molecular cluster with a MnII9MoV6 core has the highest ground state spin value, S=51/2, reported to-date (Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000)). In the high-temperature regime, the magnetic properties are characterized by ferromagnetic intracluster coupling. In the magnetic range below 44 K, the magnetic cluster signature is lost as possibly a bulk behavior starts to emerge. The three-dimensional networks exhibit both paramagnetic and ferromagnetic behavior, since the magnetic properties of these materials directly reflect the electronic configuration of the metal ion incorporated into the octacyanometalate building blocks (Pilkington et al., in preparation). For both the oxalate- and cyanide-bridged materials, we are able to manipulate the magnetic properties of the supramolecular assemblies by tuning the electronic configurations of the metal ions incorporated into the appropriate molecular building blocks (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials,” Chimia 54, 593 (2000)).